Mostrar el registro sencillo del ítem
Revisión sistemática de actividad antagonista y posible control biológico con levaduras sobre Botrytis cinerea, hongo que afecta los cultivos de Cannabis sativa L
dc.contributor.advisor | Sánchez Leal, Ligia Consuelo | |
dc.contributor.author | Acero Montoya, María Alejandra | |
dc.date.accessioned | 2023-07-11T19:25:38Z | |
dc.date.available | 2023-07-11T19:25:38Z | |
dc.date.issued | 2022-09 | |
dc.identifier.uri | https://repositorio.universidadmayor.edu.co/handle/unicolmayor/6544 | |
dc.description.abstract | Cannabis sativa L es una planta que ha generado bastante interés en los últimos años por su versatilidad en el uso en diferentes industrias como cosmética, médica y farmacéutica. Este cultivo requiere diferentes etapas para lograr la maduración de la flor y de aquí extraer los componentes psicoactivo y no psicoactivo. Al igual que otro tipo de cultivos, éste es susceptible a enfermedades y patógenos, entre ellos el hongo fitopatógeno Botrytis cinerea, que ataca con severidad a miles de cultivos frutales y hortícolas. El moho gris es una enfermedad difícil de controlar porque tiene una variedad de modos de ataque, diversos hospederos como fuentes de inóculo y puede sobrevivir gracias a sus micelios, conidios y esclerocios en los desechos de los cultivos, los cuales promueven su supervivencia durante períodos prolongados. Para mitigar su incidencia en frutos y plantas, se ha estudiado la posibilidad de implementar el control biológico, medida que sustituye el uso de fungicidas que contaminan el medio ambiente. Si bien es cierto, este hongo se ha detectado y analizado en diferentes tipos de huéspedes, en la planta Cannabis sativa L los estudios son limitados. En este sentido, este proyecto realizó la revisión sistemática del uso de microorganismos levaduriformes como agentes antagonistas contra el hongo Botrytis cinerea y con esta información se recomienda el uso de levaduras como opción de control biológico en plantas de Cannabis sativa L. | spa |
dc.description.abstract | Cannabis sativa L is a plant that has generated a lot of interest in recent years due to its versatility in use in different industries such as cosmetics, medicine and pharmaceuticals. This crop requires different stages to achieve the maturation of the flower and from here to extract the psychoactive and non-psychoactive components. Like other types of crops, it is susceptible to diseases and pathogens, including the phytopathogenic fungus Botrytis cinerea, that severely attacks thousands of fruit and vegetable crops. Gray mold is a difficult disease to control because it has a variety of modes of attack, diverse hosts as sources of inoculum, and can survive thanks to its mycelia, conidia, and sclerotia in crop debris, which promote its survival for prolonged periods. To mitigate its incidence on fruits and plants, the possibility of implementing biological control has been studied, a measure that replaces the use of fungicides that pollute the environment. Although it is true that this fungus has been detected and analyzed in different types of hosts, studies on the Cannabis sativa L plant are limited. In this sense, this project carried out a systematic review of the use of yeastlike microorganisms as antagonistic agents against the fungus Botrytis cinerea and with this information, the use of yeasts is recommended as a biological control option in Cannabis | eng |
dc.description.tableofcontents | Contenido 1. Introducción10 2. Marco referencial 15 2.1. Cannabis sativa L15 2.1.1. Composición química de Cannabis sativa L .15 2.1.2. Cultivo de Cannabis sativa L .17 2.2. Botrytis cinerea .20 2.2.1. Morfología20 2.2.2. Ciclo de infección de Botrytis cinerea 21 2.3. Botrytis cinerea en Cannabis sativa L.21 2.4. Control biológico y uso de microorganismos .25 3. Objetivos .31 3.1. Objetivo General31 3.2. Objetivos específicos31 4. Diseño metodológico .32 5. Resultados y discusión34 6. Conclusiones 70 7. Recomendaciones 71 | spa |
dc.format.extent | 82p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados Universidad Colegio Mayor de Cundinamarca, 2022 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Revisión sistemática de actividad antagonista y posible control biológico con levaduras sobre Botrytis cinerea, hongo que afecta los cultivos de Cannabis sativa L | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Microbiología | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogota | spa |
dc.publisher.program | Maestría en Microbiología | spa |
dc.relation.references | Ledezma-Morales M, Cristina Rodríguez A, Amariles P. Mercado del Cannabis medicinal en Colombia: una oportunidad para el sector salud que requiere lineamientos estratégicos del gobierno nacional y la academia. Rev Médicas UIS [Internet]. 2020;33(1):53–8. Available from: https://revistas.uis.edu.co/index.php/revistamedicasuis/article/view/10942/10709 | spa |
dc.relation.references | Bridgeman MB, Abazia DT. Medicinal cannabis: History, pharmacology, and implications for the acute care setting. P T [Internet]. 2017;42(3):180–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312634/pdf/ptj4203180.pdf | spa |
dc.relation.references | EFE. Cannabis medicinal en Colombia: dinero que entraría por exportaciones. Portafolio [Internet]. 2021;1. Available from: https://www.portafolio.co/negocios/empresas/cannabis-medicinal-aporte-a-lasexportaciones-y-a-la-economia-colombiana-segun-procolombia-555455 | spa |
dc.relation.references | Cota I, Torrado S. Colombia saca músculo en el mercado del cannabis medicinal y pone en alerta a Canadá. EL PAÍS [Internet]. 2021;1. Available from: https://elpais.com/economia/2021-09-02/colombia-saca-musculo-en-el-mercado-delcannabis-medicinal-y-pone-en-alerta-a-canada.html#:~:text=Colombia%2C país cercano al ecuador,cuesta a los productores canadienses. | spa |
dc.relation.references | Plesken C, Pattar P, Reiss B, Noor ZN, Zhang L, Klug K, et al. Genetic Diversity of Botrytis cinerea Revealed by Multilocus Sequencing, and Identification of B. cinerea Populations Showing Genetic Isolation and Distinct Host Adaptation. Front Plant Sci [Internet]. 2021;12(May):1–15. Available from: file:///C:/Users/Maria Alejandra/Downloads/fpls-12-663027.pdf | spa |
dc.relation.references | Llamozas EJS y, Parra HNR. Evaluación del efecto de bioestimulantes (Quitosano y Gluconato de Cu) en el control de Botrytis cinerea en una variedad de Cannabis sativa L [Internet]. Universidad de Ciencias Ambientales y Aplicadas; 2021. Available from: https://repository.udca.edu.co/bitstream/handle/11158/4394/Evaluación del efecto de bioestimulantes %28Quitosano y Gluconato de Cu%29 en el control de Botrytis cinerea en una variedad de Cannabis sativa L.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Jaramillo J, Rodríguez V, Guzmán M, Zapata M, Rengifo T. Manual técnico: Buenas 73 prácticas agrícolas (BPA) en la producción de tomate bajo condiciones protegidas. 2007;314. Available from: https://www.fao.org/3/a1374s/a1374s02.pdf | spa |
dc.relation.references | De Simone N, Pace B, Grieco F, Chimienti M, Tyibilika V, Santoro V, et al. Botrytis cinerea and table grapes: A review of the main physical, chemical, and bio-based control treatments in post-harvest. Foods [Internet]. 2020;9(9). Available from: file:///C:/Users/Maria Alejandra/Downloads/foods-09-01138 (2).pdf | spa |
dc.relation.references | Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL. Botrytis cinerea: The cause of grey mould disease. Mol Plant Pathol [Internet]. 2007;8(5):561–80. Available from: https://bsppjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/j.1364- 3703.2007.00417.x | spa |
dc.relation.references | García JE. Consecuencias indeseables del uso de los plaguicidas en el ambiente. Agron Mesoam [Internet]. 2016;8(1):119. Available from: file:///C:/Users/Maria Alejandra/Downloads/CONSECUENCIAS_INDESEABLES_DE_LOS_PLAGUICIDAS _EN_EL (2).pdf | spa |
dc.relation.references | Mondino P, Vero S. Control biológico de patógenos de plantas. [Internet]. Universidad de La República; 2006. Available from: http://hdl.handle.net/20.500.12324/1772 | spa |
dc.relation.references | Vega Fernández S. Levaduras contra hongos patógenos de trigo [Internet]. Universidad de Salamanca; 2019. Available from: https://gredos.usal.es/bitstream/handle/10366/141019/REDUCIDA_Levaduras contra hongos pat%F3genos de trigo.pdf?sequence=1 | spa |
dc.relation.references | López, Angeles; Guadalupe, Esther; Brindis, Fernando; Cristians Niizawa; Ventura Martínez R. Cannabis sativa L., a singular plant. Rev Mex Ciencias Farm [Internet]. 2014;45(4):1–7. Available from: http://www.redalyc.org/articulo.oa?id=57940028004 | spa |
dc.relation.references | Lazarjani MP, Young O, Kebede L, Seyfoddin A. Processing and extraction methods of medicinal cannabis: a narrative review. J Cannabis Res [Internet]. 2021;3(1). Available from: https://doi.org/10.1186/s42238-021-00087-9 | spa |
dc.relation.references | Rojas Erika, Gil G, Ramirez J. Productos Medicinales a Base De Cannabis [Internet]. Universidad Externado De Colombia Facultad. 2017. Available from: https://bdigital.uexternado.edu.co/handle/001/295 | spa |
dc.relation.references | Jin D, Jin S, Chen J. Cannabis Indoor Growing Conditions, Management Practices, and Post-Harvest Treatment: A Review. Am J Plant Sci [Internet]. 2019;10(06):925– 46. Available from: file:///C:/Users/Maria Alejandra/Downloads/Cannabis_Indoor_Growing_Conditions_Management_Prac (1).pdf | spa |
dc.relation.references | Matute Calle PF. Control biológico del moho gris (Botrytis cinerea) en cultivos de fresa (Fragaria vesca l.) mediante hongos filamentosos antagonistas [Internet]. Universidad Politécnica Salesiana; 2019. Available from: https://dspace.ups.edu.ec/bitstream/123456789/18147/1/UPS-CT008620.pdf | spa |
dc.relation.references | Álvarez H. Efecto del manejo nutricional del calcio en la expresión de Botrytis cinérea en flores y tallos de Rosa sp [Internet]. Universidad Nacional de Colombia; 2012. Available from: https://repositorio.unal.edu.co/handle/unal/20628 | spa |
dc.relation.references | Gago Mesejo D. Efecto de las heridas sobre la resistencia de frutos de pimiento a Botrytis cinerea [Internet]. Universidad de La Coruña; 2015. Available from: http://ruc.udc.es/dspace/bitstream/2183/15276/2/GagoMesejo_Diego_TFG_2015.pdf | spa |
dc.relation.references | Benito EP, Arranz M, Eslava AP. Factores de patogenicidad de Botrytis cinerea. Rev Iberoam Micol [Internet]. 2000;17(1):43–6. Available from: http://www.reviberoammicol.com/2000-17/S43S46.pdf | spa |
dc.relation.references | Fassio A, Rodríguez MJ, Ceretta S. Cáñamo ( Cannabis sativa L .). Uruguay INIA [Internet]. 2013; Available from: http://www.mgap.gub.uy/sites/default/files/canamo_inia_uruguay.pdf | spa |
dc.relation.references | Punja ZK, Ni L. The bud rot pathogens infecting cannabis (Cannabis sativa L., marijuana) inflorescences: symptomology, species identification, pathogenicity and biological control. Can J Plant Pathol [Internet]. 2021;43(6). Available from: file:///C:/Users/Maria Alejandra/Downloads/The_bud_rot_pathogens_infecting_cannabis_Cannabis_ (1).pdf | spa |
dc.relation.references | Punja ZK. Flower and foliage-infecting pathogens of marijuana (Cannabis sativa L.) plants. Can J Plant Pathol [Internet]. 2018;40(4):514–27. Available from: file:///C:/Users/Maria Alejandra/Downloads/Flower_and_foliageinfecting_pathogens_of_marijuan.pdf | spa |
dc.relation.references | Punja ZK, Collyer D, Scott C, Lung S, Holmes J, Sutton D. Pathogens and Molds Affecting Production and Quality of Cannabis sativa L. Front Plant Sci [Internet]. 2019;10. Available from: file:///C:/Users/Maria Alejandra/Downloads/Pathogens_and_Molds_Affecting_Production_and_Quali.pdf | spa |
dc.relation.references | Millán YP, Carlos J, Osorio P. Control biológico [Internet]. 2019. 11 p. Available from: https://www.researchgate.net/publication/336180263_Control_Biologico | spa |
dc.relation.references | William Fernando V-A, Cristina Margarita T-T, Aníbal Arturo M-S, Daniel Fernando NS, Lorena Anabel M-R, Alex Gabriel D-P, et al. Control Biológico: Una herramienta para una agricultura sustentable, un punto de vista de sus beneficios en Ecuador Biological Control: A tool for sustainable agriculture, a point of view of its benefits in Ecuador. 2020;128–49. Available from: http://www.scielo.org.bo/pdf/jsab/v8n2/v8n2_a06.pdf | spa |
dc.relation.references | Díaz MA, Pereyra MM, Picón-Montenegro E, Meinhardt F, Dib JR. Killer yeasts for the biological control of postharvest fungal crop diseases. Microorganisms [Internet]. 2020;8(11):1–14. Available from: https://ri.conicet.gov.ar/bitstream/handle/11336/126580/CONICET_Digital_Nro.42b70 7d9-9dff-4e04-895f-c2e2789b792f_A.pdf?sequence=2&isAllowed=y | spa |
dc.relation.references | Sellitto VM, Zara S, Fracchetti F, Capozzi V, Nardi T. Microbial biocontrol as an alternative to synthetic fungicides: Boundaries between pre-and postharvest applications on vegetables and fruits. Fermentation [Internet]. 2021;7(2). Available from: https://www.mdpi.com/2311-5637/7/2/60/htm | spa |
dc.relation.references | Punja ZK, Utkhede RS. Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol [Internet]. 2003;21(9):400–7. Available from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.318.8045&rep=rep1&type =pdf | spa |
dc.relation.references | Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, et al. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms [Internet]. 2022;10(3). Available from: https://www.researchgate.net/publication/359115402_Biological_Control_of_Plant_Pa thogens_A_Global_Perspective/link/6228cb81a39db062db8d71e7/download | spa |
dc.relation.references | Zhang X, Li B, Zhang Z, Chen Y, Tian S. Antagonistic yeasts: A promising alternative to chemical fungicides for controlling postharvest decay of fruit. J Fungi [Internet]. 2020;6(3):1–15. Available from: https://www.researchgate.net/publication/344004922_Antagonistic_Yeasts_A_Promisi ng_Alternative_to_Chemical_Fungicides_for_Controlling_Postharvest_Decay_of_Frui t | spa |
dc.relation.references | Pretscher J, Fischkal T, Branscheidt S, Jäger L, Kahl S, Schlander M, et al. Yeasts from different habitats and their potential as biocontrol agents. Fermentation [Internet]. 2018;4(2). Available from: https://www.researchgate.net/publication/324746542_Yeasts_from_Different_Habitats _and_Their_Potential_as_Biocontrol_Agents | spa |
dc.relation.references | Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q. Biocontrol yeasts: mechanisms and applications. World J Microbiol Biotechnol [Internet]. 2019;35(10):1–19. Available from: https://www.mendeley.com/catalogue/d7a261e5-d2c4-3f81-935a9ec07941394c/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=open_c atalog&userDocumentId=%7Be119768e-8096-4503-bad6-a6f21ccfd459%7D | spa |
dc.relation.references | Alpha CJ, Campos M, Jacobs-Wagner C, Strobel SA. Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Appl Environ Microbiol [Internet]. 2015;81(3):1147–56. Available from: https://www.researchgate.net/publication/269178907_Mycofumigation_by_the_Volatil e_Organic_CompoundProducing_Fungus_Muscodor_albus_Induces_Bacterial_Cell_Death_through_DNA_ Damage | spa |
dc.relation.references | Wang Y, Bao Y, Shen D, Feng W, Yu T, Zhang J, et al. Biocontrol of Alternaria alternata on cherry tomato fruit by use of marine yeast Rhodosporidium paludigenum Fell & Tallman. Int J Food Microbiol [Internet]. 2008;123(3):234–9. Available from: https://agris.fao.org/agris-search/search.do?recordID=US201300889830 | spa |
dc.relation.references | Jamal A, Farhat H, Urooj F, Rahman A, Irfan M, Ehteshamul-Haque S. Characterization of endophytic yeast and its suppressive effect on root rotting fungi of tomato under neem cake soil amendment. Egypt J Biol Pest Control [Internet]. 2021;31(1). Available from: https://doi.org/10.1186/s41938-021-00493-4 | spa |
dc.relation.references | Liu J, Sui Y, Wisniewski M, Droby S, Liu Y. Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol [Internet]. 2013;167(2):153–60. Available from: https://www.sciencedirect.com/science/article/abs/pii/S016816051300411X | spa |
dc.relation.references | He DC, He MH, Amalin DM, Liu W, Alvindia DG, Zhan J. Biological control of plant diseases: An evolutionary and eco-economic consideration. Pathogens [Internet]. 2021;10(10). Available from: https://www.mdpi.com/2076-0817/10/10/1311 | spa |
dc.relation.references | Tsegaye Z, Genene T, Tenkegna TA, Gizaw B. Concept, Principle and Application of Biological Control and their Role in Sustainable Plant Diseases Management Strategies. Int J Res Stud Biosci [Internet]. 2018;6(4). Available from: https://www.researchgate.net/publication/325847525_Concept_Principle_and_Applica tion_of_Biological_Control_and_their_Role_in_Sustainable_Plant_Diseases_Manage ment_Strategies | spa |
dc.relation.references | Di Canito A, Mateo-vargas MA, Mazzieri M, Cantoral J, Foschino R, Cordero-Bueso G, et al. The role of yeasts as biocontrol agents for pathogenic fungi on postharvest grapes: A review. Foods [Internet]. 2021;10(7):1–15. Available from: https://www.semanticscholar.org/paper/The-Role-of-Yeasts-as-Biocontrol-Agents-forFungi-A-Canito-Mateo-Vargas/31877df12a46b3473f3c81c31de50b3783232d82 | spa |
dc.relation.references | Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Rev Esp Nutr Humana y Diet. 2016;20(2):148–60. | spa |
dc.relation.references | Raspor P, Miklič-Milek D, Avbelj M, Čadež N. Biocontrol of grey mould disease on grape caused by Botrytis cinerea with autochthonous wine yeasts. Food Technol Biotechnol [Internet]. 2010;48(3):336–43. Available from: https://hrcak.srce.hr/file/87220 | spa |
dc.relation.references | Csutak O, Vassu T, Sarbu I, Stoica I, Cornea P. Antagonistic activity of three newly isolated yeast strains from the surface of fruits. Food Technol Biotechnol [Internet]. 2013;51(1):70–7. Available from: https://www.researchgate.net/publication/239524317_Antagonistic_Activity_of_Three _Newly_Isolated_Yeast_Strains_from_the_Surface_of_Fruits | spa |
dc.relation.references | El Ghaouth A, Wilson CL, Wisniewski M. Control of postharvest decay of apple fruit with Candida saitoana and induction of defense responses. Phytopathology [Internet]. 2003;93(3):344–8. Available from: https://www.researchgate.net/publication/23408676_Control_of_Postharvest_Decay_ of_Apple_Fruit_with_Candida_saitoana_and_Induction_of_Defense_Responses | spa |
dc.relation.references | Santos A, Sánchez A, Marquina D. Yeasts as biological agents to control Botrytis cinerea. Microbiol Res [Internet]. 2004;159(4):331–8. Available from: http://higiene.unex.es/Bibliogr/Detoxlev/Santos04.pdf | spa |
dc.relation.references | Huang R, Li GQ, Zhang J, Yang L, Che HJ, Jiang DH, et al. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology [Internet]. 2011;101(7):859–69. Available from: https://apsjournals.apsnet.org/doi/pdf/10.1094/PHYTO-09-10-0255 | spa |
dc.relation.references | Kasfi K, Taheri P, Jafarpour B, Tarighi S. Identification of epiphytic yeasts and bacteria with potential for biocontrol of grey mold disease on table grapes caused by botrytis cinerea. Spanish J Agric Res [Internet]. 2018;16(1). Available from: https://www.researchgate.net/publication/323568968_Identification_of_epiphytic_yeas ts_and_bacteria_with_potential_for_biocontrol_of_grey_mold_disease_on_table_grap es_caused_by_Botrytis_cinerea/link/5b16f01545851547bba31713/download | spa |
dc.relation.references | Choińska R, Piasecka-Jóźwiak K, Chabłowska B, Dumka J, Łukaszewicz A. Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol [Internet]. 2020;113(8):1135–46. Available from: https://d-nb.info/1216874271/34 | spa |
dc.relation.references | Feng M, Lv Y, Li T, Li X, Liu J, Chen X, et al. Postharvest treatments with three yeast strains and their combinations to control botrytis cinerea of snap beans. Foods [Internet]. 2021;10(11). Available from: https://www.researchgate.net/publication/356078927_Postharvest_Treatments_with_ Three_Yeast_Strains_and_Their_Combinations_to_Control_Botrytis_cinerea_of_Sna p_Beans | spa |
dc.relation.references | Chen PH, Chen RY, Chou JY. Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on strawberry fruits. Mycobiology [Internet]. 2018;46(1):33–46. Available from: https://www.tandfonline.com/doi/full/10.1080/12298093.2018.1454013 | spa |
dc.relation.references | Vargas M, Garrido F, Zapata N, Tapia M. Isolation and Selection of Epiphytic Yeat for Biocontrol of Botrytis cinerea Pers. on Table Grapes. Chil J Agric Res [Internet]. 2012;72(3). Available from: https://www.researchgate.net/publication/258227103_Isolation_and_Selection_of_Epi phytic_Yeat_for_Biocontrol_of_Botrytis_cinerea_Pers_on_Table_Grapes | spa |
dc.relation.references | Buck JW. Combinations of fungicides with phylloplane yeasts for improved control of Botrytis cinerea on geranium seedlings. Phytopathology [Internet]. 2004;94(2). Available from: https://apsjournals.apsnet.org/doi/epdf/10.1094/PHYTO.2004.94.2.196 | spa |
dc.relation.references | Marsico AD, Velenosi M, Perniola R, Bergamini C, Sinonin S, David‐vaizant V, et al. Native vineyard non‐saccharomyces yeasts used for biological control of botrytis cinerea in stored table grape. Microorganisms [Internet]. 2021;9(2):1–17. Available from: file:///C:/Users/Maria Alejandra/Downloads/Marsico2021.pdf | spa |
dc.relation.references | Li B, Peng H, Tian S. Attachment capability of antagonistic yeast Rhodotorula glutinis to Botrytis cinerea contributes to biocontrol efficacy. Front Microbiol [Internet]. 2016;7(MAY). Available from: https://www.researchgate.net/publication/301826014_Attachment_Capability_of_Anta gonistic_Yeast_Rhodotorula_glutinis_to_Botrytis_cinerea_Contributes_to_Biocontrol_ Efficacy | spa |
dc.relation.references | Kheireddine A, Essghaier B, Hedi A, Dhieb C, Sadfi-Zouaoui N. New epiphytic yeasts able to reduce grey mold disease on apples. Plant Prot Sci [Internet]. 2018;54(4):248– 57. Available from: file:///C:/Users/Maria Alejandra/Downloads/New_epiphytic_yeasts_able_to_reduce_grey_mold_dise.pdf | spa |
dc.relation.references | Masih EI, Alie I, Paul B. Can the grey mould disease of the grape-vine be controlled by yeast? FEMS Microbiol Lett [Internet]. 2000;189(2). Available from: https://watermark.silverchair.com/189-2- 233.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAA towggLWBgkqhkiG9w0BBwagggLHMIICwwIBADCCArwGCSqGSIb3DQEHATAeBglg hkgBZQMEAS4wEQQMTuETq6w9LxzW12iZAgEQgIICjdZvWbfs2B4- Sw0nCe8nMZGvXXK_3HAhM9lG9vxM0wbDk | spa |
dc.relation.references | Fernandez-San Millan A, Larraya L, Farran I, Ancin M, Veramendi J. Successful biocontrol of major postharvest and soil-borne plant pathogenic fungi by antagonistic yeasts. Biol Control [Internet]. 2021;160:104683. Available from: https://doi.org/10.1016/j.biocontrol.2021.104683 | spa |
dc.relation.references | Mewa-Ngongang M, Du Plessis HW, Chidi BS, Hutchinson UF, Ntwampe KSO, Okudoh VI, et al. Physiological and antagonistic properties of pichia kluyveri for curative and preventive treatments against post-harvest fruit fungi. Polish J Food Nutr Sci [Internet]. 2021;71(3):245–53. Available from: https://www.researchgate.net/publication/353046856_Physiological_and_Antagonistic _Properties_of_Pichia_kluyveri_for_Curative_and_Preventive_Treatments_Against_Post-Harvest_Fruit_Fungi | spa |
dc.relation.references | Wang X, Glawe DA, Kramer E, Weller D, Okubara PA. Biological control of botrytis cinerea: interactions with native vineyard yeasts from Washington State. Phytopathology [Internet]. 2018;108(6):691–701. Available from: file:///C:/Users/Maria Alejandra/Downloads/2018.pdf | spa |
dc.relation.references | Buck JW. In vitro antagonism of Botrytis cinerea by phylloplane yeasts. Can J Bot [Internet]. 2002;80(8):885–91. Available from: https://www.researchgate.net/publication/237154776_In_vitro_antagonism_of_Botryti s_cinerea_by_phylloplane_yeasts | spa |
dc.relation.references | Navarta LG, Calvo J, Posetto P, Benuzzi D, Sanz MI. Freeze-drying of a mixture of bacterium and yeast for application in postharvest control of pathogenic fungi. SN Appl Sci [Internet]. 2020;2(7). Available from: https://link.springer.com/article/10.1007/s42452-020-3049-9 | spa |
dc.relation.references | González-Esparza A, Gentina JC, Ah-Hen KS, Alvarado R, Stevenson J, Briceño E, et al. Survival of Spray-Dried Rhodotorula mucilaginosa Isolated from Natural Microbiota of Murta berries and Antagonistic Effect on Botrytis cinerea. Food Technol Biotechnol [Internet]. 2019;57(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718967/ | spa |
dc.relation.references | Bautista Silva JP, Barbosa Barbosa H de J, Uribe Vélez D. Prototipo de formulación a base de Rhodotorula mucilaginosa para el control de Botrytis cinerea en Rosas. Rev Colomb Biotecnol [Internet]. 2016;18(2). Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123- 34752016000200003 | spa |
dc.relation.references | Cook DWM. Effect of formulated yeast in suppressing the liberation of Botrytis cinerea conidia. Plant Dis [Internet]. 2002;86(11):1265–70. Available from: https://apsjournals.apsnet.org/doi/pdf/10.1094/PDIS.2002.86.11.1265 | spa |
dc.relation.references | Masih EI, Slezack-Deschaumes S, Marmaras I, Barka EA, Vernet G, Charpentier C, et al. Characterisation of the yeast Pichia membranifaciens and its possible use in the biological control of Botrytis cinerea, causing the grey mould disease of grapevine. FEMS Microbiol Lett. 2001;202(2). | spa |
dc.relation.references | Fiori S, Fadda A, Giobbe S, Berardi E, Migheli Q. Pichia angusta is an effective biocontrol yeast against postharvest decay of apple fruit caused by Botrytis cinerea and Monilia fructicola. FEMS Yeast Res [Internet]. 2008;8(6):961–3. Available from: https://www.researchgate.net/publication/23132939_Pichia_angusta_is_an_effective_ biocontrol_yeast_against_postharvest_decay_of_apple_fruit_caused_by_Botrytis_cin erea_and_Monilia_fructicola | spa |
dc.relation.references | Andrade Navia JM, Ramírez Plazas E, Velasco Corredor A. El futuro del cannabis medicinal en Colombia [Internet]. Editorial UC. Universidad de Cundinamarca; 2021. Available from: https://repositorio.ucundinamarca.edu.co/bitstream/handle/20.500.12558/3525/Futuro de Cananabis mayo 11.pdf?sequence=2&isAllowed=y | spa |
dc.relation.references | Sorrentino G. Introduction to emerging industrial applications of cannabis (Cannabis sativa L.). Rend Lincei Sci Fis e Nat [Internet]. 2021 Jun 19;32(2):233–43. Available from: https://link.springer.com/10.1007/s12210-021-00979-1 | spa |
dc.relation.references | Mnekin L, Ripoll L. Topical use of cannabis sativa l. Biochemicals. Cosmetics [Internet]. 2021;8(3). Available from: file:///C:/Users/Maria Alejandra/Downloads/cosmetics-08-00085 (1).pdf | spa |
dc.relation.references | Punja ZK. Emerging diseases of Cannabis sativa and sustainable management. Pest Manag Sci [Internet]. 2021;77(9):3857–70. Available from: https://www.researchgate.net/publication/349005186_Emerging_Diseases_of_Canna bis_sativa_and_Sustainable_Management | spa |
dc.relation.references | Punja ZK. The diverse mycoflora present on dried cannabis (Cannabis sativa L., marijuana) inflorescences in commercial production. Can J Plant Pathol [Internet]. 2021;43(1):88–100. Available from: https://doi.org/10.1080/07060661.2020.1758959 | spa |
dc.relation.references | Jerushalmi S, Maymon M, Dombrovsky A, Freeman S. Fungal pathogens affecting the production and quality of medical cannabis in israel. Plants [Internet]. 2020;9(7):1– 13. Available from: https://www.mdpi.com/2223-7747/9/7/882 | spa |
dc.relation.references | Kusari P, Kusari S, Spiteller M, Kayser O. Endophytic fungi harbored in Cannabis sativa L.: Diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers [Internet]. 2013;60(1):137–51. Available from: https://www.researchgate.net/publication/257800081_Endophytic_fungi_harbored_in_ Cannabis_sativa_L_Diversity_and_potential_as_biocontrol_agents_against_host_pla nt-specific_phytopathogens | spa |
dc.relation.references | Balthazar C, Cantin G, Novinscak A, Joly DL, Filion M. Expression of Putative Defense Responses in Cannabis Primed by Pseudomonas and/or Bacillus Strains and Infected by Botrytis cinerea. Front Plant Sci [Internet]. 2020;11. Available from: https://www.frontiersin.org/articles/10.3389/fpls.2020.572112/full | spa |
dc.relation.references | Orjuela-Rojas JM, García Orjuela X, Ocampo Serna S. Medicinal cannabis: knowledge, beliefs, and attitudes of Colombian psychiatrists. J Cannabis Res [Internet]. 2021;3(1). Available from: https://doi.org/10.1186/s42238-021-00083-z | spa |
dc.relation.references | Jiménez Quintero CA, Pantoja Estrada AH, Leonel HF. Riesgos en la salud de agricultores por uso y manejo de plaguicidas, microcuenca “La Pila.” Univ y Salud [Internet]. 2016;18(3):417. Available from: http://www.scielo.org.co/pdf/reus/v18n3/v18n3a03.pdf | spa |
dc.relation.references | . Feldman J. Pesticide use in marijuana production: Safety issues and sustainable options. Pestic You [Internet]. 2014;34(4):14–23. Available from: https://www.beyondpesticides.org/assets/media/documents/watchdog/documents/Pes ticideUseCannabisProduction.pdf | spa |
dc.relation.references | Nega A. Review on Concepts in Biological Control of Plant Pathogens. 2014;4(27):33–55. Available from: https://core.ac.uk/download/pdf/234660456.pdf | spa |
dc.relation.references | Sharma A, Diwevidi VD, Singh S, Pawar KK, Jerman M, Singh LB, et al. Biological Control and its Important in Agriculture. Int J Biotechnol Bioeng Res [Internet]. 2013;4(3):175–80. Available from: http://www.ripublication.com/ | spa |
dc.relation.references | Ali EMM, Almagboul AZI, Khogali SME, Gergeir UMA. Antimicrobial Activity of <i>Cannabis sativa</i> L. Chin Med. 2012;03(01):61–4 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.proposal | Cannabis sativa L | spa |
dc.subject.proposal | Botrytis cinerea | spa |
dc.subject.proposal | Control biológico | spa |
dc.subject.proposal | Levaduras | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |