dc.contributor.advisor | Arévalo Pinzón, Gabriela | |
dc.contributor.author | Casallas Rodríguez, Lady Maricel | |
dc.date.accessioned | 2024-05-23T15:47:47Z | |
dc.date.available | 2024-05-23T15:47:47Z | |
dc.date.issued | 2022-04 | |
dc.identifier.uri | https://repositorio.universidadmayor.edu.co/handle/unicolmayor/6907 | |
dc.description.abstract | El sector avícola es considerado el más dinámico de las actividades pecuarias, reflejándose en el
aumento progresivo anual que tiene el consumo de pollo en Colombia. Sin embargo, esta industria
es afectada por distintas enfermedades como la Salmonelosis, producida por la bacteria
Salmonella. En busca de estrategias que puedan disminuir este impacto, el presente trabajo de
investigación evaluó el uso de aceites esenciales sobre el crecimiento de cepas de Salmonella no
móviles (son patógenos específicos para determinados grupos de animales) con diferentes perfiles
de resistencia aisladas de aves de corral. Para abordar este objetivo, se determinó inicialmente, la
prevalencia de Salmonella no móvil en distintas muestras de aves de corral que ingresaron y fueron
procesadas en el laboratorio Servet SAS durante los años 2019-2021. Los resultados mostraron un
total de 19,1% (n= 6058) de Salmonella presente en aves de corral, siendo el 57,8% (n=127)
Salmonella no-móviles. La línea comercial más afectada por la Salmonella fue la de postura, donde
se evidenció un 89,5% (n=89). Posteriormente se evaluaron los diferentes patrones de resistencia
sobre las Salmonella no móviles mediante la técnica de Kirby Bauer. Los ensayos mostraron que,
del total de Salmonella no-móviles el 97% presentó resistencia a la penicilina. En busca de
tratamientos alternos, se evaluó la capacidad antibacteriana de doce aceites esenciales sobre las
Salmonella no móviles con distintos perfiles de resistencia. Al evaluar el efecto bacteriano se
encontró que el aceite de canela inhibió el crecimiento bacteriano con un halo de inhibición de
23mm. Los ensayos de microdilución en caldo mostraron una concentración mínima inhibitoria
(CMI) de 0,08%; así mismo, se encontró una concentración mínima bactericida de 0,011% (CMB).
Los estudios de toxicidad sobre eritrocitos de aves mostraron un 0,9% de hemólisis a una
concentración de 7,5%, concentración cien veces más alta que la CMI. A partir de estos resultados
se encontró un índice terapéutico del aceite de canela de 96, convirtiendo a este aceite en una
posible alternativa terapéutica para el tratamiento de la salmonelosis en aves industria y abre
nuevos estudios para evaluar en campo la seguridad de este aceite y su efectividad en la
eliminación de Salmonella en aves de corral. | spa |
dc.description.abstract | The poultry sector is considered the most dynamic of livestock activities, reflected in the annual
progressive increase in chicken consumption in Colombia. However, this industry is affected by
different diseases such as Salmonellosis, caused by the Salmonella bacteria. In search of strategies
that can reduce this impact, this research work evaluated the use of essential oils on the growth of
non-motile Salmonella strains (they are specific pathogens for certain groups of animals) with
different resistance profiles isolated from poultry. . To address this objective, the prevalence of
non-mobile Salmonella was initially determined in different samples of poultry that entered and
were processed in the Servet SAS laboratory during the years 2019-2021. The results showed a
total of 19.1% (n= 6058) of Salmonella present in poultry, being 57.8% (n=127) non-motile
Salmonella. The commercial line most affected by Salmonella was the laying line, where 89.5%
(n=89) was evidenced. Subsequently, the different resistance patterns on non-motile Salmonella
were evaluated using the Kirby Bauer technique. The tests showed that, of the total number of nonmotile
Salmonella, 97% presented resistance to penicillin. In search of alternative treatments, the
antibacterial capacity of twelve essential oils on non-motile Salmonella with different resistance
profiles was evaluated. When evaluating the bacterial effect, it was found that cinnamon oil
inhibited bacterial growth with an inhibition halo of 23mm . Broth microdilution assays showed a
minimum inhibitory concentration (MIC) of 0.08%; Likewise, a minimum bactericidal
concentration of 0.011% (CMB) was found. Toxicity studies on chicken erythrocytes showed a
hemolytic effect at a concentration of 7.5%, one hundred times higher than the MIC. These data
made it possible to calculate a therapeutic index for cinnamon oil that is 96, making this oil a
possible therapeutic alternative for the treatment of salmonellosis in the poultry industry and
suggests future studies that will show the safety of this oil and its effectiveness in the elimination
of Salmonella in poultry. | eng |
dc.description.tableofcontents | Tabla de contenido
Lista de Figuras 6
Lista de Tablas 7
Lista de simbolos y abreviaturas 8
Resumen 9
Abstract 10
1 Introducción 11
2 Marco teórico y generalidades 14
2.1 Historia 14
2.2 Caracteristicas generales de Salmonella 14
2.3 Estructura antigenica 15
2.4 Clasificacion 16
2.5 Epidemiologia aviar 17
2.5.1 Avicultura en el mundo 18
2.5.2 Avicultura en Colombia 18
2.5.3 Enfermedades encontradas en las aves de corral 20
2.6 Prevalencia de Salmonella en pollo 21
2.6.1 Salmonelosis aviar 21
2.6.2 Transmision en aves. 22
2.6.3 Signos clinicos 22
2.7 Resistencia 22
2.7.1 Mecanismo de resistencia 25
2.8 Aceites esenciales 27
2.9 Composicion quimica 28
2.9.1 Terpenos y Terpenoides 29
2.9.2 Compuestos Aromaticos 29
2.10 Actividad antibacteriana 29
3 Objetivos 30
3.1 Objetivo general 31
3.2 Objetivos especificos 31
4 Diseño metodológico 31
Fase 1 32
4.1 Aislamiento e Identificacion de Salmonella. 33
Fase 2 34
4.2 Prevalencia de salmonella no movil 35
4.3 Descripcion y seleccion de Salmonella no-moviles con diferentes patrones de susceptibilidad y
resistencia. 35
Fase 3 36
4.4 Recuperacion y mantenimiento de los aislados seleccionados 36
4.5 Evaluacion de la Actividad antimicrobiana de los aceites esenciales por el metodo de difusion
en agar frente Salmonella no móvil aisladas de aves de corral con perfiles de resistencia 36
4.6 Comprobacion de las curvas de calibracion de las cepas bacterianas 37
4.7 Actividad antimicrobiana contra Salmonella no móvil aisladas de aves de corral con perfiles de
resistencia, CMI y CMB 38
4.8 Determinacion de la actividad hemolitica de los aceites esenciales. 39
4.9 Calculo del indice terapeutico (CMH/CMI) 40
5 Resultados 41
5.1 Prevalencia de Salmonella spp en las muestras analizadas 41
5.2 Salmonellas no moviles presentan una elevada resistencia a la Penicilina. 43
5.3 El aceite de canela tiene caracteristicas antimicrobianas similares a la ciprofloxacina 45
5.4 Bajas concentraciones del aceite de canela son necesarias para inhibir el crecimiento
bacteriano de Salmonella no movil 46
5.5 Efecto bactericida del aceite de canela sobre los aislados de Salmonella no-movil. 46
5.6 El aceite de canela genera una minima actividad hemolitica. 47
5.7 Elevado indice terapeutico de la canela como aceite esencial sugiere una nueva estrategia
frente a la Salmonella no movil aislada de aves de corral con distintos patrones de resistencia. 48
6 Discusión 49
7 Conclusiones 55
Anexo A 56
Referencias 57 | spa |
dc.format.extent | 62p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.title | Alternativa terapéutica en la industria avícola: Uso de aceites esenciales sobre Salmonella no móviles aisladas de aves de corral | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.contributor.corporatename | Universidad Colegio Mayor de Cundinamarca | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Microbiología | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá D.C., Colombia | spa |
dc.publisher.program | Maestría en Microbiología | spa |
dc.relation.references | Tollefson L, Miller MA. Antibiotic Use in Food Animals: Controlling the Human Health Impact
[Internet]. Vol. 83, journal of aoac international. 2000. Available from: http://www.fda.gov/cvm | spa |
dc.relation.references | comportamiento del credito para el sector avicola: relacion productores de FENAVI-FINAGRO
[Internet]. [cited 2020 Oct 22]. Available from:
https://www.finagro.com.co/sites/default/files/informe-fenavi-v2.pdf | spa |
dc.relation.references | United States Department of Agriculture Foreign Agricultural Service Livestock and Poultry: World
Markets and Trade Philippines Pork Imports Expected to Reach Record Levels. 2021; | spa |
dc.relation.references | Producción | Producción y productos avícolas | Organización de las Naciones Unidas para la
Alimentación y la Agricultura [Internet]. [cited 2021 Sep 28]. Available from:
http://www.fao.org/poultry-production-products/production/es/ | spa |
dc.relation.references | Consumo Per cápita Mundo - Pollo - FENAVI - Federación Nacional de Avicultores de Colombia
[Internet]. [cited 2021 Aug 22]. Available from: https://fenavi.org/estadisticas/consumo-per-capitamundo-
pollo/ | spa |
dc.relation.references | RUIZ B JDSMC and UC. Susceptibilidad antimicrobiana in vitro de cepas de Salmonella spp. en
granjas de ponedoras comerciales del departamento de Antioquia [Internet]. 2006 [cited 2020 Oct
22]. p. 297–305. Available from:
http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-
06902006000300006&lng=en&nrm=iso | spa |
dc.relation.references | Marshall BM, Levy SB. Food Animals and Antimicrobials: Impacts on Human Health. Clin
Microbiol Rev [Internet]. 2011 Oct [cited 2021 Sep 30];24(4):718. Available from:
/pmc/articles/PMC3194830/ | spa |
dc.relation.references | Penha RAC, Ferreira JC, Kanashiro AMI, Darini AL da C, Berchieri A. Antimicrobial susceptibility
of Salmonella Gallinarum and Salmonella Pullorum isolated from ill poultry in Brazil. Ciência Rural
[Internet]. 2016 Mar 1 [cited 2021 Aug 12];46(3):513–8. Available from:
http://www.scielo.br/j/cr/a/LMcQJf3J63wzvDVmc4cn3wn/?lang=en | spa |
dc.relation.references | Lee YJ, Kim KS, Kim JH, Tak RB. Salmonella gallinarum gyrA mutations associated with
fluoroquinolone resistance. http://dx.doi.org/101080/0301945042000195759 [Internet]. 2010 Apr
[cited 2021 Aug 12];33(2):251–7. Available from:
https://www.tandfonline.com/doi/abs/10.1080/0301945042000195759 | spa |
dc.relation.references | Emilio Argote-vega F, Jimena Suarez-montenegro Z, Elizabeth Tobar-delgado M, Angel Perezalvarez
J, Mauricio Hurtado-benavides A, Delgado-ospina J. Evaluation of the inability capacity of
essential oils in Staphylococcus aureus and Escherichia coli Capacidade de avaliação inibitório de
óleos essenciais em Staphylococcus aureus e Escherichia coli. | spa |
dc.relation.references | WT L, EJ V, SA B. Synergy between essential oil components and antibiotics: a review. Crit Rev
Microbiol [Internet]. 2014 Feb [cited 2021 Aug 22];40(1):76–94. Available from:
https://pubmed.ncbi.nlm.nih.gov/23445470/ | spa |
dc.relation.references | Carlos Adelantado Faura. la salmonella, de actualidad desde siempre - Google Libros [Internet].
[cited 2020 Oct 22]. Available from:
https://books.google.com.co/books?id=Uor_5EEcboIC&printsec=frontcover&dq=salmonella&hl=
es&sa=X&ved=2ahUKEwjq1PutjsnsAhVLw1kKHRtoBacQ6AEwAHoECAAQAg#v=onepage&
q=salmonella&f=false | spa |
dc.relation.references | Yoshikawa TT, Herbert P, Oill P-LA, Yoshi-Kawa TT, Guze LB, Yoshikawa T. Specialty
Conference salmonellosis. | spa |
dc.relation.references | Flores Aguilar LE. caracterización fenotipica y genotipica de estirpes de salmonella choleraesuis
aislada de ambientes marinos [Internet]. [cited 2020 Oct 22]. Available from:
https://sisbib.unmsm.edu.pe/bibvirtualdata/Tesis/Basic/flores_al/Antec.pdf | spa |
dc.relation.references | Velasquez CG, MacKlin KS, Kumar S, Bailey M, Ebner PE, Oliver HF, et al. Prevalence and
antimicrobial resistance patterns of Salmonella isolated from poultry farms in southeastern United
States. Poult Sci. 2018 Jun 1;97(6):2144–52 | spa |
dc.relation.references | Grimont PAD, Weill F-X. WHO Collaborating Centre for Reference and Research on Salmonella
antigenic formulae of the salmonella serovars 2007 9th edition. | spa |
dc.relation.references | Parra M, Durango J, Mattar S. microbiología, patogénesis, epidemiología, clínica y diagnóstico de
las infecciones producidas por Salmonella. Rev MVZ Córdoba [Internet]. 2002 Jul 1 [cited 2020
Nov 17];7(2):187–200. Available from: https://revistamvz.unicordoba.edu.co/article/view/521 | spa |
dc.relation.references | Pulido Landinez M. conceptos basicos para el control de salmonella en la avicultura colombiana.
2018. | spa |
dc.relation.references | Arora D, Kumar S, Jindal N, Narang G, Kapoor PK, Mahajan NK. Prevalence and epidemiology of
Salmonella enterica serovar Gallinarum from poultry in some parts of Haryana, India. Vet World
[Internet]. 2015 [cited 2021 Aug 24];8(11):1300. Available from: /pmc/articles/PMC4774741/ | spa |
dc.relation.references | Revisión del desarrollo avícola. [cited 2021 Nov 15]; Available from: www.fao.org/publications | spa |
dc.relation.references | Industria Avicola - April 2020 - Fuerte crecimiento de la avicultura latinoamericana en 2019
[Internet]. [cited 2020 Oct 22]. Available from: https://www.industriaavicoladigital.
com/industriaavicola/april2020/MobilePagedArticle.action?articleId=1573912#articleId157
3912 | spa |
dc.relation.references | Información estadística - FENAVI - Federación Nacional de Avicultores de Colombia [Internet].
Estadisticas. [cited 2020 Oct 22]. Available from: https://fenavi.org/informacion-estadistica/ | spa |
dc.relation.references | UERIA M de la PSIN de S, Perfil. Perfil de riesgo Salmonella spp. (no tifoideas) en pollo entero y
en piezas. 2011. | spa |
dc.relation.references | ICA. Resolución 3714 del 2015. 2015. | spa |
dc.relation.references | asistente P, asociado P, Andrés Jaimes-Olaya J, Patricia Gómez Ramírez A, Claudia Marcela
Álvarez Espejo D, Soler Tovar D, et al. Las enfermedades infecciosas y su importancia en el sector
avícola. | spa |
dc.relation.references | Mdegela RH, Yongolo MGS, Minga UM, Olsen JE. Molecular epidemiology of
Salmonellaï¿¿gallinarum in chickens in Tanzania. Avian Pathol [Internet]. 2000 [cited 2021 Nov
15];29(5):457–63. Available from:
https://www.tandfonline.com/action/journalInformation?journalCode=cavp20 | spa |
dc.relation.references | Rubio-Ortega A, Travieso-Novelles M del C, Riverón-Alemán Y, Martínez-Vasallo A, Peña-
Rodríguez J, Espinosa-Castaño I, et al. Actividad antibacteriana de aceites esenciales de plantas
cultivadas en Cuba sobre cepas de Salmonella enterica. Rev Salud Anim [Internet]. 2018 [cited 2020
Oct 23];40(3). Available from: http://scielo.sld.cu/scielo.php?pid=S0253-
570X2018000300004&script=sci_arttext&tlng=en | spa |
dc.relation.references | manual terrestre de la OIE [Internet]. pulorosis y tifosis aviar. 2018 [cited 2021 Aug 24]. p. 2.
Available from:
https://www.oie.int/fileadmin/Home/esp/Health_standards/tahm/3.03.11_Pulorosis_tifosis_aviar.p
df | spa |
dc.relation.references | M B, M C-R, P R. [Salmonella enterica: a review or the trilogy agent, host and environment and its
importance in Chile]. Rev Chilena Infectol [Internet]. 2016 Oct 1 [cited 2021 Sep 30];33(5):547–
57. Available from: https://pubmed.ncbi.nlm.nih.gov/28112339/ | spa |
dc.relation.references | Quesada A, Reginatto GA, Ruiz Español A, Colantonio LD, Burrone MS. Resistencia
antimicrobiana de Salmonella spp aislada de alimentos de origen animal para consumo humano.
Rev Peru Med Exp Salud Publica [Internet]. 2016 Feb 12 [cited 2020 Oct 23];33(1):32. Available
from: https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/1899 | spa |
dc.relation.references | AE K, JR A, MJ S, TA M, JJ K. Human multidrug-resistant Salmonella Newport infections,
Wisconsin, 2003-2005. Emerg Infect Dis [Internet]. 2007 [cited 2021 Sep 30];13(11). Available
from: https://pubmed.ncbi.nlm.nih.gov/18217570/ | spa |
dc.relation.references | Castro-Vargas RE, Herrera-Sánchez MP, Rodríguez-Hernández R, Rondón-Barragán IS. Antibiotic
resistance in Salmonella spp. isolated from poultry: A global overview. Vet World [Internet]. 2020
Oct 1 [cited 2021 Sep 30];13(10):2070. Available from: /pmc/articles/PMC7704309/ | spa |
dc.relation.references | Levings RS, Lightfoot D, Partridge SR, Hall RM, Djordjevic SP. The genomic island SGI1,
containing the multiple antibiotic resistance region of Salmonella enterica serovar typhimurium
DT104 or variants of it, is widely distributed in other S. enterica serovars. J Bacteriol [Internet].
2005 Jul [cited 2020 Oct 22];187(13):4401–9. Available from:
https://pubmed.ncbi.nlm.nih.gov/15968049/ | spa |
dc.relation.references | Silva C, Wiesner M, Calva E. The Importance of Mobile Genetic Elements in the Evolution of
Salmonella: Pathogenesis, Antibiotic Resistance and Host Adaptation. Salmonella - A Divers
Superbug [Internet]. 2012 Jan 20 [cited 2021 Sep 30]; Available from:
https://www.intechopen.com/chapters/26459 | spa |
dc.relation.references | I R, MR R, B G, KL H. Potential international spread of multidrug-resistant invasive Salmonella
enterica serovar enteritidis. Emerg Infect Dis [Internet]. 2012 Jul [cited 2021 Sep 30];18(7):1173–
6. Available from: https://pubmed.ncbi.nlm.nih.gov/22709653/ | spa |
dc.relation.references | JM M, CA A. Mechanisms of Antibiotic Resistance. Microbiol Spectr [Internet]. 2016 May [cited
2021 Sep 30];4(2):464–72. Available from: https://pubmed.ncbi.nlm.nih.gov/27227291/ | spa |
dc.relation.references | S C, P P, M H, JL C, G I. Mechanisms of quinolone action and resistance: where do we stand? J
Med Microbiol [Internet]. 2017 May 1 [cited 2021 Sep 30];66(5):551–9. Available from:
https://pubmed.ncbi.nlm.nih.gov/28504927/ | spa |
dc.relation.references | Ugboko H, Nandita D, De N. Mechanisms of Antibiotic resistance in Salmonella typhi Evaluation
of Empirical Functions and Fate of Isomaltose View project Drug Discovery From Indigenous
medicinal Plants View project Mechanisms of Antibiotic resistance in Salmonella typhi. Artic Int J
Curr Microbiol Appl Sci [Internet]. 2014 [cited 2021 Sep 30];3(12):461–76. Available from:
https://www.researchgate.net/publication/321491731 | spa |
dc.relation.references | YY L, Y W, TR W, LX Y, R Z, J S, et al. Emergence of plasmid-mediated colistin resistance
mechanism MCR-1 in animals and human beings in China: a microbiological and molecular
biological study. Lancet Infect Dis [Internet]. 2016 Feb 1 [cited 2021 Sep 30];16(2):161–8.
Available from: https://pubmed.ncbi.nlm.nih.gov/26603172/ | spa |
dc.relation.references | Sakkas H, Papadopoulou C. Antimicrobial activity of basil, oregano, and thyme essential oils
[Internet]. Vol. 27, Journal of Microbiology and Biotechnology. Korean Society for Microbiolog
and Biotechnology; 2017 [cited 2021 May 25]. p. 429–38. Available from:
https://pubmed.ncbi.nlm.nih.gov/27994215/ | spa |
dc.relation.references | Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A. Essential Oils as
Antimicrobial Agents—Myth or Real Alternative? Molecules [Internet]. 2019 Jun 5 [cited 2021 Oct
4];24(11). Available from: /pmc/articles/PMC6612361/ | spa |
dc.relation.references | Martínez A. universidad de antioquia aceites esenciales. 2001. | spa |
dc.relation.references | Anales de la Facultad de Medicina. 2001 [cited 2020 Oct 23]; Available from:
http://www.redalyc.org/articulo.oa?id=37962208 | spa |
dc.relation.references | Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils - A review
[Internet]. Vol. 46, Food and Chemical Toxicology. Food Chem Toxicol; 2008 [cited 2021 May 25].
p. 446–75. Available from: https://pubmed.ncbi.nlm.nih.gov/17996351/ | spa |
dc.relation.references | Dan Zekaria laboratorios Calier. Los aceites esenciales una alternativa a los antimicrobianos
[Internet]. [cited 2021 Oct 6]. Available from: https://www.wpsaaeca.
es/aeca_imgs_docs/wpsa1182855355a.pdf | spa |
dc.relation.references | Montero-Recalde M, Jessica Revelo I, Avilés-Esquivel D, Edgar Valle V, Guevara-Freire D.
Antimicrobial effect of cinnamon essential oil (Cinnamomum zeylanicum) on salmonella strains
[Internet]. Vol. 28, Revista de Investigaciones Veterinarias del Peru. Universidad Nacional Mayor
de San Marcos; 2017 [cited 2020 Oct 23]. p. 987–93. Available from:
http://dx.doi.org/10.15381/rivep.v28i4.13890 | spa |
dc.relation.references | Stephen J. Cavalieri ... [et al.] ; editora coordinadora MBC. Manual de Pruebas de Susceptibilidad
Antimicrobiana [Internet]. 2005 [cited 2022 Apr 3]. Available from:
https://www.paho.org/hq/dmdocuments/2005/susceptibilidad-antimicrobiana-manual-pruebas-
2005.pdf | spa |
dc.relation.references | Evaluación de la actividad antibacteriana y citotóxica de péptidos derivados de la secuencia PfRif
(321-340): ryrrkkkmkkalqyikllke [Internet]. [cited 2022 Apr 3]. Available from:
https://repositorio.unal.edu.co/handle/unal/76529 | spa |
dc.relation.references | CLSI: Methods for dilution antimicrobial susceptibility... - Google Académico [Internet]. [cited
2022 Apr 3]. Available from:
https://scholar.google.com/scholar_lookup?title=Methods+for+Dilution+Antimicrobial+Susceptib
ility+Tests+for+Bacteria+That+Grow+Aerobically&author=CLSI&publication_year=2012 | spa |
dc.relation.references | Joshi S, Bisht GS, Rawat DS, Kumar A, Kumar R, Maiti S, et al. Interaction studies of novel cell
selective antimicrobial peptides with model membranes and E. coli ATCC 11775. Biochim Biophys
Acta [Internet]. 2010 Oct [cited 2022 Apr 3];1798(10):1864–75. Available from:
https://pubmed.ncbi.nlm.nih.gov/20599694/ | spa |
dc.relation.references | Martha E, Jiménez G. Evaluación de la actividad antimicrobiana de péptidos cortos derivados del
péptido 23688 sobre algunos microorganismos de importancia clínica | spa |
dc.relation.references | López-Mata MA, Valbuena-Gregorio E, Quihui-Cota L, Morales-Figueroa GG, Ruiz-Cruz S,
Campos-García JC, et al. Efecto de Microemulsiones de Aceites Esenciales Sobre el Eritrocito
Humano y Bacterias Patógenas Effect of Microemulsions of Essential Oils on Human Erythrocyte
and Pathogens Bacteria. | spa |
dc.relation.references | Hammer KA, Carson CF, Riley T V. Antimicrobial activity of essential oils and other plant extracts.
J Appl Microbiol [Internet]. 1999 Jun 1 [cited 2022 May 3];86(6):985–90. Available from:
https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2672.1999.00780.x | spa |
dc.relation.references | Vasconcelos NG, Croda J, Simionatto S. Antibacterial mechanisms of cinnamon and its
constituents: A review. Microb Pathog. 2018 Jul 1;120:198–203. | spa |
dc.relation.references | Montero-Recalde M, Revelo J, Avilés-Esquivel D, Valle E, Guevara-Freire D. Efecto
Antimicrobiano del Aceite Esencial de Canela (Cinnamomum zeylanicum) sobre Cepas de
Salmonella Antimicrobial effect of cinnamon essential oil (cinnamomum zeylanicum) on
salmonella strains. Rev Inv Vet Perú [Internet]. 2017 [cited 2022 May 3];28(4):987–93. Available
from: http://dx.doi.org/10.15381/rivep.v28i4.13890 | spa |
dc.relation.references | Seyedtaghiya MH, Fasaei BN, Peighambari SM. Antimicrobial and antibiofilm effects of satureja
hortensis essential oil against escherichia coli and salmonella isolated from poultry. Iran J Microbiol
[Internet]. 2021 Feb 10 [cited 2021 May 2];13(1):74–80. Available from:
https://pubmed.ncbi.nlm.nih.gov/33889365/ | spa |
dc.relation.references | Gende LB, Principal J, Maggi MD, Palacios SM, Fritz R, Eguaras MJ. Extracto de Melia azedarach
y aceites esenciales de Cinnamomun zeylanicum, Mentha piperita y Lavandula officinalis como
control de Paenibacillus larvae. Zootec Trop. 2008;26(2):151–6. | spa |
dc.relation.references | Slobodníková L, Fialová S, Rendeková K, Kováč J, Mučaji P. Antibiofilm Activity of Plant
Polyphenols. Molecules [Internet]. 2016 Dec 1 [cited 2022 May 3];21(12). Available from:
https://pubmed.ncbi.nlm.nih.gov/27983597/ | spa |
dc.relation.references | Goliomytis M, Tsoureki D, Simitzis PE, Charismiadou MA, Hager-Theodorides AL, Deligeorgis
SG. The effects of quercetin dietary supplementation on broiler growth performance, meat quality,
and oxidative stability. Poult Sci. 2014 Aug 1;93(8):1957–62. | spa |
dc.relation.references | Qaid MM, Al-Mufarrej SI, Azzam MM, Al-Garadi MA. Anticoccidial effectivity of a traditional
medicinal plant, Cinnamomum verum, in broiler chickens infected with Eimeria tenella. Poult Sci
[Internet]. 2021 Mar 1 [cited 2022 Jun 27];100(3). Available from: /pmc/articles/PMC7936149/ | spa |
dc.relation.references | Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review.
[cited 2022 May 3]; Available from: www.elsevier.com/locate/ijfoodmicro | spa |
dc.relation.references | Abd El-Hack ME, Alagawany M, Abdel-Moneim AME, Mohammed NG, Khafaga AF, Bin-Jumah
M, et al. Cinnamon (Cinnamomum zeylanicum) Oil as a Potential Alternative to Antibiotics in
Poultry. Antibiot 2020, Vol 9, Page 210 [Internet]. 2020 Apr 26 [cited 2022 Jun 27];9(5):210.
Available from: https://www.mdpi.com/2079-6382/9/5/210/htm | spa |
dc.relation.references | Ali A, Ponnampalam EN, Pushpakumara G, Cottrell JJ, Suleria HAR, Dunshea FR. Cinnamon: A
Natural Feed Additive for Poultry Health and Production—A Review. Anim 2021, Vol 11, Page
2026 [Internet]. 2021 Jul 7 [cited 2022 Jun 27];11(7):2026. Available from:
https://www.mdpi.com/2076-2615/11/7/2026/htm | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.subject.proposal | Salmonella | spa |
dc.subject.proposal | Aceites esenciales | spa |
dc.subject.proposal | Resistencia antimicrobiana | spa |
dc.subject.proposal | Aves | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |