Mostrar el registro sencillo del ítem

dc.contributor.advisorMuñoz, Julián Esteban
dc.contributor.advisorArévalo, Gabriela
dc.contributor.authorTorres Beltrán, Richar Duván
dc.date.accessioned2024-05-23T16:21:28Z
dc.date.available2024-05-23T16:21:28Z
dc.date.issued2022-05
dc.identifier.urihttps://repositorio.universidadmayor.edu.co/handle/unicolmayor/6910
dc.description.abstractLa candidiasis es una infección oportunista frecuente en pacientes hospitalizados y/o inmunodeprimidos, alcanzando tasas de mortalidad de 46% aproximadamente. La creciente resistencia farmacológica de Candida spp, y la aparición del patógeno emergente Candida auris, han convertido la candidiasis en un problema de salud pública. Se han investigado diferentes tipos de péptidos antimicrobianos como alternativas terapéuticas para controlar la candidiasis de manera efectiva y segura. El objetivo de este trabajo fue evaluar la actividad antifúngica in vitro de tres péptidos antimicrobianos (PAMs) sintéticos (35409, 1609 y 29009) contra Candida auris, Candida albicans, Candida glabrata, Candida parapsilosis, Candida krusei y Candida tropicalis, especies con importancia clínica mundial. La concentración inhibitoria mínima (CMI) de los péptidos contra Candida spp., se determinó mediante el método de microdilución en placa y se encontró que los 3 péptidos inhibieron el crecimiento de las levaduras, siendo el 1609 el que exhibió mejor actividad. El efecto de los PAM sobre la formación de biopelículas en las especies de C. auris y C. albicans también se evaluó a través del ensayo XTT, encontrándose actividad inhibitoria de los 3 péptidos sobre ambas especies. Adicionalmente, los daños estructurales en C. auris y C. albicans causados por la acción de los péptidos fueron evaluados por microscopía electrónica de transmisión (TEM) y finalmente, se evaluó la citotoxicidad in vitro de los péptidos contra fibroblastos murinos L929. Se evidenció alteraciones morfológicas inducidas por los péptidos, tanto en membrana como a nivel intracelular sobre C. albicans y C. auris, así como total inocuidad de los PAM con la línea celular murina L929 después de 24 horas de tratamiento. De esta manera, se concluye que los péptidos ensayados son potenciales alternativas terapéuticas con especial interés por el péptido 1609, contra las especies de Candida más importantes de Colombia y el mundo.spa
dc.description.abstractCandidiasis is a common opportunistic infection in hospitalized and/or immunosuppressed patients, reaching mortality rates of approximately 46%. The increasing pharmacological resistance of Candida spp, and the appearance of the emerging pathogen Candida auris, have turned candidiasis into a public health problem. Different types of antimicrobial peptides have been investigated as therapeutic alternatives to control candidiasis effectively and safely. The aim of this work was to evaluate the in vitro antifungal activity of three synthetic antimicrobial peptides (AMPs) (35409, 1609 and 29009) against Candida auris, Candida albicans, Candida glabrata, Candida parapsilosis, Candida krusei and Candida tropicalis, species with worldwide clinical importance. The minimum inhibitory concentration (MIC) of the peptides against Candida spp. was determined by the plate microdilution method and it was found that the 3 peptides inhibited the growth of the yeasts, being 1609 the one that exhibited the best activity. The effect of PAMs on biofilm formation in C. auris and C. albicans species was also evaluated through the XTT assay, finding inhibitory activity of the 3 peptides on both species. Additionally, the structural damages in C. auris and C. albicans caused by the action of the peptides were evaluated by transmission electron microscopy (TEM) and finally, the in vitro cytotoxicity of the peptides against L929 murine fibroblasts was evaluated. Morphological alterations induced by the peptides were evidenced, both in the membrane and at the intracellular level on C. albicans and C. auris, as well as total innocuousness of the PAM with the murine cell line L929 after 24 hours of treatment. In this way, it is concluded that the tested peptides are potential therapeutic alternatives with special interest for peptide 1609, against the most important Candida species in Colombia and the world.eng
dc.description.tableofcontentsContenido 1. Introducción 11 2. Objetivos 14 2.1. Objetivo general 14 2.2. Objetivos específicos 14 3. Marco teórico 15 3.1. Generalidades de Candida spp. 15 3.2. Candida auris 18 3.3. Péptidos antimicrobianos (PAMs) 20 3.3.1. PAMs de origen natural 21 3.3.2. PAMs de origen sintético 22 4. Materiales y métodos 23 4.1. Cepas de Candida auris y otras especies de Candida de importancia clínica. 23 4.2. Consideraciones éticas 23 4.3. Síntesis y purificación de los péptidos antimicrobianos 24 4.4. Determinación de la concentración inhibitoria mínima (CMI) de los péptidos 1609, 29009 y 35409 24 4.5. Evaluación de la capacidad inhibitoria de biopelícula de los péptidos 1609, 29009 y 35409 25 4.6. Efecto de los péptidos sobre la morfología de las levaduras mediante microscopía electrónica de transmisión (TEM) 26 4.7. Determinación de la actividad citotóxica in vitro de los péptidos 35409, 1609 y 29009. 26 5. Resultados 28 5.1. Los péptidos 1609, 29009 y 35409 inhibieron el crecimiento de las seis especies de Candida evaluadas 28 5.2. La formación de biopelícula en C. albicans y C. auris fue inhibida por los péptidos 1609, 29009 y 35409 33 5.3. La morfología de las levaduras C. albicans y C. auris es afectada por los péptidos 1609, 29009 y 35409 35 5.4. Los péptidos 1609, 29009 y 35409 no tienen actividad citotóxica sobre la línea celular murina L929 37 6. Discusión 39 7. Conclusiones 48 8. Recomendaciones 49 9. Material Suplementario 50 9.1. S1: Ensayo Actividad Inhibitoria de los PAMs 1609, 29009 y 35409 en Candida spp. 50 9.2. S2: Ensayo Actividad Inhibitoria sobre la formación de Biopelícula de los PAMs 1609, 29009 y 35409 en Candida spp. 55 Referencias 57spa
dc.format.extent64p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleEvaluación de la capacidad antifúngica de tres péptidos sintéticos antimicrobianos contra especies del género Candida de importancia en salud públicaspa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.corporatenameUniversidad Colegio Mayor de Cundinamarcaspa
dc.contributor.researchgroupEstudios en microbiología traslacional y enfermedades emergentes MICROSspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Microbiologíaspa
dc.description.researchareaMicrobiología médicaspa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.C., Colombiaspa
dc.publisher.programMaestría en Microbiologíaspa
dc.relation.referencesPerlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management [Internet]. Vol. 17, The Lancet Infectious Diseases. Lancet Publishing Group; 2017 [cited 2021 Mar 23]. p. e383–92. Available from: https://linkinghub.elsevier.com/retrieve/pii/S147330991730316Xspa
dc.relation.referencesSrivastava V, Singla RK, Dubey AK. Emerging Virulence, Drug Resistance and Future Anti-fungal Drugs for Candida Pathogens. Current Topics in Medicinal Chemistry. 2018 May 29;18(9):759–78.spa
dc.relation.referencesLee Y, Puumala E, Robbins N, Cowen LE. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and beyond. Chemical Reviews [Internet]. 2021 Mar 24 [cited 2022 Mar 21];121(6):3390–411. Available from: https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.0c00199spa
dc.relation.referencesMotoa G, Muñoz JS, Oñate J, Pallares CJ, Hernández C, Villegas MV. Epidemiology of Candida isolates from Intensive Care Units in Colombia from 2010 to 2013. Revista Iberoamericana de Micología. 2017 Jan 1;34(1):17–22.spa
dc.relation.referencesMaldonado NA, Cano LE, de Bedout C, Arbeláez CA, Roncancio G, Tabares ÁM, et al. Association of clinical and demographic factors in invasive candidiasis caused by fluconazole-resistant Candida species: a study in 15 hospitals, Medellín, Colombia 2010–2011. Diagnostic Microbiology and Infectious Disease. 2014 Jun 1;79(2):280–6.spa
dc.relation.referencesZuluaga Rodríguez A, de Bedout Gómez C, Agudelo Restrepo CA, Hurtado Parra H, Arango Arteaga M, Restrepo Moreno Á, et al. Sensibilidad a fluconazol y voriconazol de especies de Candida aisladas de pacientes provenientes de unidades de cuidados intensivos en Medellín, Colombia (2001–2007). Revista Iberoamericana de Micología. 2010 Jul 1;27(3):125–9.spa
dc.relation.referencesCannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, et al. Candida albicans drug resistance - Another way to cope with stress [Internet]. Vol. 153, Microbiology. Microbiology (Reading); 2007 [cited 2021 Mar 24]. p. 3211–7. Available from: https://pubmed.ncbi.nlm.nih.gov/17906120/spa
dc.relation.referencesOsei Sekyere J. Candida auris: A systematic review and meta-analysis of current updates on an emerging multidrug-resistant pathogen. Microbiologyopen. 2018 Aug 1;7(4).spa
dc.relation.referencesInstituto Nacional de Salud. Circular 0025 [Internet]. Bogotá D. C.; 2017 Jul [cited 2021 Mar 24]. Available from: https://www.famisanar.com.co/wp-content/uploads/2019/10/Infecciones-Invasivas_-0025-DE-2017-INS-CANDIDA.pdfspa
dc.relation.referencesInstituo Nacional de Salud. Alerta por emergencia global de infecciones invasivas causadas por la levadura multirresistente, Candida auris [Internet]. Bogotá D. C.; 2016 Sep [cited 2021 Mar 24]. Available from: https://www.gov.uk/government/collections/candida-aurisspa
dc.relation.referencesCarvajal-Valencia SK, Lizarazo D, Duarte C, Escandon P. Identification of Candida auris isolates recovered through laboratory surveillance in Colombia: A challenge for diagnostic. Infectio [Internet]. 2020 Jun 10 [cited 2021 Mar 24];24(4):224–8. Available from: http://dx.doi.org/10.22354/in.v24i4.880spa
dc.relation.referencesZuluaga A. Candida auris: estrategias y retos para prevenir un brote. Biomédica [Internet]. 2020 Mar [cited 2021 Mar 24];40(1):5–10. Available from: http://www.scielo.org.co/pdf/bio/v40n1/0120-4157-bio-40-01-5.pdfspa
dc.relation.referencesBechinger B, Gorr SU. Antimicrobial Peptides: Mechanisms of Action and Resistance [Internet]. Vol. 96, Journal of Dental Research. SAGE Publications Inc.; 2017 [cited 2021 Mar 24]. p. 254–60. Available from: https://pubmed.ncbi.nlm.nih.gov/27872334/spa
dc.relation.referencesBarreto-Santamaría A, Curtidor H, Arévalo-Pinzón G, Herrera C, Suárez D, Pérez WH, et al. A new synthetic peptide having two target of antibacterial action in E. coli ML35. Frontiers in Microbiology [Internet]. 2016 [cited 2021 Mar 24];7(DEC). Available from: /pmc/articles/PMC5167725/spa
dc.relation.referencesAlvarez-Moreno CA, Cortes JA, Denning DW. Burden of fungal infections in Colombia. Journal of Fungi [Internet]. 2018 Jun 1 [cited 2021 Mar 31];4(2). Available from: /pmc/articles/PMC6023354/spa
dc.relation.referencesde Bedout C, Gómez BL. Candida y candidiasis invasora: un reto continuo para su diagnóstico temprano Candida and candidiasis: the challenge continues for an early diagnosis. Infectio [Internet]. 2010 [cited 2021 Mar 31];14:159–71. Available from: http://www.scielo.org.co/pdf/inf/v14s2/v14s2a08.pdfspa
dc.relation.referencesPappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nature Reviews Disease Primers [Internet]. 2018 May 11 [cited 2021 Mar 31];4. Available from: https://pubmed.ncbi.nlm.nih.gov/29749387/spa
dc.relation.referencesWisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical Infectious Diseases [Internet]. 2004 Aug 1 [cited 2021 Mar 31];39(3):309–17. Available from: https://pubmed.ncbi.nlm.nih.gov/15306996/spa
dc.relation.referencesMejia-Chew C, O’Halloran JA, Olsen MA, Stwalley D, Kronen R, Lin C, et al. Effect of infectious disease consultation on mortality and treatment of patients with candida bloodstream infections: a retrospective, cohort study. The Lancet Infectious Diseases. 2019 Dec 1;19(12):1336–44spa
dc.relation.referencesLazo V, Hernández G, Méndez R. Candidiasis sistémica en pacientes críticos, factores predictores de riesgo. Horizonte Médico (Lima) [Internet]. 2018 Dec 31 [cited 2021 Mar 31];18(1):75–85. Available from: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1727-558X2018000100011&lng=es&nrm=iso&tlng=esspa
dc.relation.referencesCortés JA, Ruiz JF, Melgarejo-Moreno LN, Lemos E v., Cortés JA, Ruiz JF, et al. Candidemia en Colombia. Biomédica [Internet]. 2020 [cited 2022 Apr 26];40(1):195–207. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-41572020000100195&lng=en&nrm=iso&tlng=esspa
dc.relation.referencesNucci M, Queiroz-Telles F, Alvarado-Matute T, Tiraboschi IN, Cortes J, Zurita J, et al. Epidemiology of Candidemia in Latin America: A Laboratory-Based Survey. PLoS ONE [Internet]. 2013 Mar 19 [cited 2021 Apr 1];8(3). Available from: https://pubmed.ncbi.nlm.nih.gov/23527176/spa
dc.relation.referencesQuindós G. Epidemiology of candidaemia and invasive candidiasis. A changing face. Vol. 31, Revista Iberoamericana de Micologia. Elsevier Doyma; 2014. p. 42–8.spa
dc.relation.referencesBenjamin DK, Poole C, Steinbach WJ, Rowen JL, Walsh TJ. Neonatal candidemia and end-organ damage: A critical appraisal of the literature using meta-analytic techniques. Pediatrics [Internet]. 2003 Sep 1 [cited 2021 Apr 1];112(3 I):634–40. Available from: https://pediatrics.aappublications.org/content/112/3/634spa
dc.relation.referencesWalsh TJ, Katragkou A, Chen T, Salvatore CM, Roilides E. Invasive candidiasis in infants and children: Recent advances in epidemiology, diagnosis, and treatment. Journal of Fungi [Internet]. 2019 Mar 1 [cited 2021 Apr 1];5(1):11. Available from: /pmc/articles/PMC6463055/spa
dc.relation.referencesPiarroux R, Grenouillet F, Balvay P, Tran V, Blasco G, Millon L, et al. Assessment of preemptive treatment to prevent severe candidiasis in critically ill surgical patients. Critical Care Medicine [Internet]. 2004 Dec [cited 2021 Apr 1];32(12):2443–9. Available from: https://pubmed.ncbi.nlm.nih.gov/15599149/spa
dc.relation.referencesAguado JM, Ruiz-Camps I, Muñoz P, Mensa J, Almirante B, Vázquez L, et al. Guidelines for the treatment of invasive candidiasis and other yeasts. Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). 2010 Update. Enfermedades Infecciosas y Microbiologia Clinica [Internet]. 2011 [cited 2021 Apr 1];29(5):345–61. Available from: https://pubmed.ncbi.nlm.nih.gov/21459489/spa
dc.relation.referencesParkins MD, Sabuda DM, Elsayed S, Laupland KB. Adequacy of empirical antifungal therapy and effect on outcome among patients with invasive Candida species infections. Journal of Antimicrobial Chemotherapy [Internet]. 2007 Sep [cited 2021 Apr 1];60(3):613–8. Available from: https://pubmed.ncbi.nlm.nih.gov/17576697/spa
dc.relation.referencesPappas PG, Kauffman CA, Andes D, Benjamin, Jr. DK, Calandra TF, Edwards, Jr. JE, et al. Guías de práctica clínica para el manejo de la candidiasis: actualización del 2009, de la Infectious Diseases Society of America. Clinical Infectious Diseases [Internet]. 2009 Mar 1 [cited 2021 Apr 1];48(5):T1–35. Available from: https://academic.oup.com/cid/article/48/5/503/384590spa
dc.relation.referencesYapar N, Pullukcu H, Avkan-Oguz V, Sayin-Kutlu S, Ertugrul B, Sacar S, et al. Evaluation of species distribution and risk factors of candidemia: A multicenter case-control study. Medical Mycology [Internet]. 2010 Jan [cited 2021 Apr 1];49(1):26–31. Available from: https://pubmed.ncbi.nlm.nih.gov/20662635/spa
dc.relation.referencesKim MN, Shin JH, Sung H, Lee K, Kim EC, Ryoo N, et al. Candida haemulonii and closely related species at 5 university hospitals in Korea: Identification, antifungal susceptibility, and clinical features. Clinical Infectious Diseases [Internet]. 2009 Mar 15 [cited 2021 Apr 1];48(6). Available from: https://pubmed.ncbi.nlm.nih.gov/19193113/spa
dc.relation.referencesJeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM, Borman A, et al. Candida auris: A review of the literature. Clinical Microbiology Reviews [Internet]. 2018 Jan 1 [cited 2021 Apr 1];31(1). Available from: https://cmr.asm.org/content/31/1/e00029-17spa
dc.relation.referencesLee WG, Shin JH, Uh Y, Kang MG, Kim SH, Park KH, et al. First three reported cases of nosocomial fungemia caused by Candida auris. Journal of Clinical Microbiology [Internet]. 2011 Sep [cited 2021 Apr 1];49(9):3139–42. Available from: /pmc/articles/PMC3165631/spa
dc.relation.referencesEscandón P, Chow NA, Caceres DH, Gade L, Berkow EL, Armstrong P, et al. Molecular epidemiology of candida auris in Colombia Reveals a Highly Related, Countrywide Colonization with Regional Patterns in Amphotericin B Resistance. Clinical Infectious Diseases [Internet]. 2019 Jan 1 [cited 2021 Mar 24];68(1):15–21. Available from: https://pubmed.ncbi.nlm.nih.gov/29788045/spa
dc.relation.referencesCarvajal-Valencia SK, Lizarazo D, Duarte C, Escandon P. Identificación de aislamientos de Candida auris recuperados a través de la vigilancia por laboratorio en Colombia: un reto para el diagnóstico. Infectio [Internet]. 2020 Jun 10 [cited 2022 Apr 26];24(4):224–8. Available from: http://revistainfectio.org/index.php/infectio/article/view/880spa
dc.relation.referencesU.S. Department of Health & Human Services. Invasive Candidiasis Statistics [Internet]. 2019 [cited 2021 Nov 7]. Available from: https://www.cdc.gov/fungal/diseases/candidiasis/invasive/statistics.htmlspa
dc.relation.referencesVallabhaneni S, Kallen A, Tsay S, Chow N, Welsh R, Kerins J, et al. Investigation of the First Seven Reported Cases of Candida auris, a Globally Emerging Invasive, Multidrug-Resistant Fungus—United States, May 2013–August 2016. American Journal of Transplantation [Internet]. 2017 Jan 1 [cited 2021 Apr 1];17(1):296–9. Available from: https://pubmed.ncbi.nlm.nih.gov/28029734/spa
dc.relation.referencesChowdhary A, Voss A, Meis JF. Multidrug-resistant Candida auris: ‘new kid on the block’ in hospital-associated infections? Journal of Hospital Infection [Internet]. 2016 Nov 1 [cited 2021 Apr 1];94(3):209–12. Available from: https://pubmed.ncbi.nlm.nih.gov/27634564/spa
dc.relation.referencesFlowers SA, Barker KS, Berkow EL, Toner G, Chadwick SG, Gygax SE, et al. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryotic Cell [Internet]. 2012 Oct [cited 2021 Apr 1];11(10):1289–99. Available from: https://pubmed.ncbi.nlm.nih.gov/22923048/spa
dc.relation.referencesBerkow E, Lockhart S. Fluconazole resistance in Candida species: a current perspective. Infection and Drug Resistance [Internet]. 2017 Jul 31 [cited 2021 Apr 1];10:237–45. Available from: https://www.dovepress.com/fluconazole-resistance-in-candida-species-a-current-perspective-peer-reviewed-article-IDRspa
dc.relation.referencesLockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clinical Infectious Diseases [Internet]. 2017 Jan 15 [cited 2021 Apr 1];64(2):134–40. Available from: https://pubmed.ncbi.nlm.nih.gov/27988485/spa
dc.relation.referencesMulder KCL, Lima LA, Miranda VJ, Dias SC, Franco OL. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Frontiers in Microbiology [Internet]. 2013 [cited 2021 Mar 30];4. Available from: https://pubmed.ncbi.nlm.nih.gov/24198814/spa
dc.relation.referencesXiao H, Shao F, Wu M, Ren W, Xiong X, Tan B, et al. The application of antimicrobial peptides as growth and health promoters for swine [Internet]. Vol. 6, Journal of Animal Science and Biotechnology. BioMed Central Ltd.; 2015 [cited 2021 Mar 30]. p. 19. Available from: http://www.jasbsci.com/content/6/1/19spa
dc.relation.referencesLledó Giralt E, Albericio Palomera F, Jiménez J. Péptidos y la industria farmacéutica. Anales de la Real Sociedad Española Química [Internet]. 2004 [cited 2021 Apr 1];1:10–6. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=818822spa
dc.relation.referencesGordon YJ, Romanowski EG, McDermott AM. Mini review: A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Current Eye Research [Internet]. 2005 Jul [cited 2021 Apr 1];30(7):505–15. Available from: /pmc/articles/PMC1497874/spa
dc.relation.referencesDomhan C, Uhl P, Meinhardt A, Zimmermann S, Kleist C, Lindner T, et al. A novel tool against multiresistant bacterial pathogens: lipopeptide modification of the natural antimicrobial peptide ranalexin for enhanced antimicrobial activity and improved pharmacokinetics. International Journal of Antimicrobial Agents [Internet]. 2018 Jul 1 [cited 2021 Apr 1];52(1):52–62. Available from: https://pubmed.ncbi.nlm.nih.gov/29649587/spa
dc.relation.referencesLiu B, Zhang W, Gou S, Huang H, Yao J, Yang Z, et al. Intramolecular cyclization of the antimicrobial peptide Polybia-MPI with triazole stapling: influence on stability and bioactivity. Journal of Peptide Science [Internet]. 2017 Nov 1 [cited 2021 Apr 1];23(11):824–32. Available from: https://pubmed.ncbi.nlm.nih.gov/28833783/spa
dc.relation.referencesSteiner H, Hultmark D, Engström Å, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature [Internet]. 1981 Jul 1 [cited 2021 Apr 1];292(5820):246–8. Available from: https://www.nature.com/articles/292246a0spa
dc.relation.referencesMoore AJ, Beazley WD, Bibby MC, Devine DA. Antimicrobial activity of cecropins. Journal of Antimicrobial Chemotherapy [Internet]. 1996 Jun 1 [cited 2021 Apr 1];37(6):1077–89. Available from: https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/37.6.1077spa
dc.relation.referencesMelino S, Santone C, di Nardo P, Sarkar B. Histatins: Salivaryx peptides with copper(II)- and zinc(II)-binding motifs Perspectives for biomedical applications [Internet]. Vol. 281, FEBS Journal. Blackwell Publishing Ltd; 2014 [cited 2021 Apr 1]. p. 657–72. Available from: https://pubmed.ncbi.nlm.nih.gov/24219363/spa
dc.relation.referencesMansour SC, de la Fuente-Núñez C, Hancock REW. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. Journal of Peptide Science [Internet]. 2015 May 1 [cited 2021 Mar 30];21(5):323–9. Available from: http://doi.wiley.com/10.1002/psc.2708spa
dc.relation.referencesWang H, LeBert V, Hung CY, Galles K, Saijo S, Lin X, et al. C-Type Lectin Receptors Differentially Induce Th17 Cells and Vaccine Immunity to the Endemic Mycosis of North America. The Journal of Immunology [Internet]. 2014 Feb 1 [cited 2021 Apr 1];192(3):1107–19. Available from: https://pubmed.ncbi.nlm.nih.gov/24391211/spa
dc.relation.referencesOmardien S, Drijfhout JW, van Veen H, Schachtschabel S, Riool M, Hamoen LW, et al. Synthetic antimicrobial peptides delocalize membrane bound proteins thereby inducing a cell envelope stress response. Biochimica et Biophysica Acta - Biomembranes [Internet]. 2018 Nov 1 [cited 2021 Apr 1];1860(11):2416–27. Available from: https://pubmed.ncbi.nlm.nih.gov/29894683/spa
dc.relation.referencesSang M, Wei H, Zhang J, Wei Z, Wu X, Chen Y, et al. Expression and characterization of the antimicrobial peptide ABP-dHC-cecropin A in the methylotrophic yeast Pichia pastoris. Protein Expression and Purification [Internet]. 2017 Dec 1 [cited 2021 Mar 30];140:44–51. Available from: https://pubmed.ncbi.nlm.nih.gov/28827052/spa
dc.relation.referencesRossi DC, Muñoz JE, Carvalho DD, Belmonte R, Faintuch B, Borelli P, et al. Therapeutic use of a cationic antimicrobial peptide from the spider Acanthoscurria gomesiana in the control of experimental candidiasis. BMC Microbiol [Internet]. 2012 [cited 2021 Mar 31];12:28. Available from: https://pubmed.ncbi.nlm.nih.gov/22394555/spa
dc.relation.referencesMuñoz JE, Rossi DCP, Ishida K, Spadari CC, Melhem MSC, Garcia DM, et al. Antifungal activity of the biphosphinic cyclopalladate C7a against Candida albicans yeast forms in vitro and in vivo. Frontiers in Microbiology [Internet]. 2017 May 3 [cited 2021 Nov 24];8(MAY). Available from: /pmc/articles/PMC5413578/spa
dc.relation.referencesPierce CG, Uppuluri P, Tristan AR, Wormley FL, Mowat E, Ramage G, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nature Protocols 2008 3:9 [Internet]. 2008 Aug 28 [cited 2021 Oct 25];3(9):1494–500. Available from: https://www.nature.com/articles/nprot.2008.141spa
dc.relation.referencesDanihelová M, Veverka M, Šturdík E, Jantová S. Antioxidant action and cytotoxicity on HeLa and NIH-3T3 cells of new quercetin derivatives. Interdisciplinary Toxicology [Internet]. 2013 [cited 2022 Mar 30];6(4):209. Available from: /pmc/articles/PMC3945760/spa
dc.relation.referencesMagana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A, et al. The value of antimicrobial peptides in the age of resistance. The Lancet Infectious Diseases. 2020 Sep 1;20(9):e216–30.spa
dc.relation.referencesLei J, Sun LC, Huang S, Zhu C, Li P, He J, et al. The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research [Internet]. 2019 [cited 2022 Mar 21];11(7):3919. Available from: /pmc/articles/PMC6684887/spa
dc.relation.referencesLi R, Chen C, Zhu S, Wang X, Yang Y, Shi W, et al. CGA-N9, an antimicrobial peptide derived from chromogranin A: direct cell penetration of and endocytosis by Candida tropicalis. Biochemical Journal [Internet]. 2019 Feb 14 [cited 2022 Mar 21];476(3):483–97. Available from: /biochemj/article/476/3/483/219528/CGA-N9-an-antimicrobial-peptide-derived-fromspa
dc.relation.referencesde Alteriis E, Maselli V, Falanga A, Galdiero S, di Lella FM, Gesuele R, et al. Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates. Infection and Drug Resistance [Internet]. 2018 [cited 2022 Mar 21];11:915. Available from: /pmc/articles/PMC6037145/spa
dc.relation.referencesRoscetto E, Contursi P, Vollaro A, Fusco S, Notomista E, Catania MR. Antifungal and anti-biofilm activity of the first cryptic antimicrobial peptide from an archaeal protein against Candida spp. clinical isolates. Scientific Reports 2018 8:1 [Internet]. 2018 Dec 4 [cited 2022 Mar 21];8(1):1–11. Available from: https://www.nature.com/articles/s41598-018-35530-0spa
dc.relation.referencesGaldiero E, Salvatore MM, Maione A, Carraturo F, Galdiero S, Falanga A, et al. Impact of the Peptide WMR-K on Dual-Species Biofilm Candida albicans/Klebsiella pneumoniae and on the Untargeted Metabolomic Profile. Pathogens [Internet]. 2021 Feb 1 [cited 2022 Mar 21];10(2):1–19. Available from: https://pubmed.ncbi.nlm.nih.gov/33669279/spa
dc.relation.referencesJia F, Wang J, Peng J, Zhao P, Kong Z, Wang K, et al. The in vitro, in vivo antifungal activity and the action mode of Jelleine-I against Candida species. Amino Acids 2017 50:2 [Internet]. 2017 Nov 3 [cited 2022 Mar 26];50(2):229–39. Available from: https://link.springer.com/article/10.1007/s00726-017-2507-1spa
dc.relation.referencesKočendová J, Kočendov K, Kočendová K, Vaňková E, Vaňkov V, Vaňková V, et al. Antifungal activity of analogues of antimicrobial peptides isolated from bee venoms against vulvovaginal Candida spp. FEMS Yeast Research [Internet]. 2019 May 1 [cited 2022 Mar 26];19(3):13. Available from: https://academic.oup.com/femsyr/article/19/3/foz013/5315757spa
dc.relation.referencesdo Nascimento Dias J, de Souza Silva C, de Araújo AR, Souza JMT, de Holanda Veloso Júnior PH, Cabral WF, et al. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Scientific Reports [Internet]. 2020 Dec 1 [cited 2021 May 3];10(1). Available from: /pmc/articles/PMC7316759/spa
dc.relation.referencesBellavita R, Maione A, Merlino F, Siciliano A, Dardano P, Stefano L de, et al. Antifungal and Antibiofilm Activity of Cyclic Temporin L Peptide Analogues against Albicans and Non-Albicans Candida Species. Pharmaceutics 2022, Vol 14, Page 454 [Internet]. 2022 Feb 21 [cited 2022 Mar 26];14(2):454. Available from: https://www.mdpi.com/1999-4923/14/2/454/htmspa
dc.relation.referencesColombo AL, Dal Mas C, Rossato L, Shimizu T, Oliveira EB, da Silva Junior PI, et al. Effects of the Natural Peptide Crotamine from a South American Rattlesnake on Candida auris, an Emergent Multidrug Antifungal Resistant Human Pathogen. Biomolecules [Internet]. 2019 Jun 1 [cited 2022 Mar 26];9(6). Available from: https://pubmed.ncbi.nlm.nih.gov/31141959/spa
dc.relation.referencesDartevelle P, Ehlinger C, Zaet A, Boehler C, Rabineau M, Westermann B, et al. D-Cateslytin: a new antifungal agent for the treatment of oral Candida albicans associated infections. Scientific Reports 2018 8:1 [Internet]. 2018 Jun 18 [cited 2022 Apr 4];8(1):1–10. Available from: https://www.nature.com/articles/s41598-018-27417-xspa
dc.relation.referencesCiociola T, Pertinhez TA, de Simone T, Magliani W, Ferrari E, Belletti S, et al. In Vitro and In Vivo Anti- Candida Activity and Structural Analysis of Killer Peptide (KP)-Derivatives. J Fungi (Basel) [Internet]. 2021 Feb 1 [cited 2022 Apr 4];7(2):1–19. Available from: https://pubmed.ncbi.nlm.nih.gov/33578728/spa
dc.relation.referencesRamamourthy G, Park J, Seo C, Vogel HJ, Park Y. Antifungal and Antibiofilm Activities and the Mechanism of Action of Repeating Lysine-Tryptophan Peptides against Candida albicans. Microorganisms 2020, Vol 8, Page 758 [Internet]. 2020 May 18 [cited 2022 Mar 27];8(5):758. Available from: https://www.mdpi.com/2076-2607/8/5/758/htmspa
dc.relation.referencesCheng R, Xu Q, Hu F, Li H, Yang B, Duan Z, et al. Antifungal activity of MAF-1A peptide against Candida albicans. International Microbiology [Internet]. 2021 May 1 [cited 2022 Apr 4];24(2):233–42. Available from: https://link.springer.com/article/10.1007/s10123-021-00159-zspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalCandida aurisspa
dc.subject.proposalCandida spp.spa
dc.subject.proposalPéptidos antimicrobianosspa
dc.subject.proposalResistenciaspa
dc.subject.proposalCandidiasisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024