Publicación: Vesículas extracelulares como biomarcadores y agentes terapéuticos en el cáncer de ovario: una revisión sistemática
| dc.contributor.advisor | Mora Quimbayo, Jonathan André | |
| dc.contributor.author | Benito Sarmiento, Natalia Alexandra | |
| dc.date.accessioned | 2025-10-20T20:36:16Z | |
| dc.date.issued | 2024-11 | |
| dc.description.abstract | Las vesículas son nanovesículas que se originan de diversas células y tienen la capacidad de transportar ácidos nucleicos, proteínas y lípidos facilitando la comunicación entre células. En el cáncer, estas vesículas participan en el crecimiento y metástasis de tumores al inhibir la respuesta inmune, promover la angiogénesis y alterar el microambiente tumoral. Además, están implicadas en la quimiorresistencia. Ante la necesidad de encontrar nuevas alternativas para el diagnóstico y tratamiento de este tipo de cáncer tan letal, se ha intensificado la investigación de las vesículas extracelulares, lo que ha dado lugar a diversas aplicaciones terapéuticas. Este trabajo se centra en explorar el papel de las vesículas extracelulares en el cáncer de ovario, subrayando su potencial como biomarcadores para el diagnóstico temprano, monitoreo de la enfermedad y tratamiento. | |
| dc.description.degreelevel | Pregrado | |
| dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | |
| dc.description.tableofcontents | TABLA DE CONTENIDO Resumen 10 1. INTRODUCCIÓN 11 2. ANTECEDENTES 12 3. MARCO TEÓRICO 15 3.1. Definición del cáncer 15 3.2. Patogénesis del cáncer 15 3.3 Cáncer de Ovario y su clasificación 19 3.3.1 Tumores serosos 20 3.3.2 Tumores mucinosos 21 3.3.3 Carcinoma de células claras 22 3.3.4 Carcinoma endometroide 22 3.3.5 Tumores de Brenner 23 3.4 Clasificación FIGO (Federación Internacional de Ginecología y Obstetricia) 23 3.5 Diagnóstico 23 3.6 Tratamiento 25 3.7 Vesículas extracelulares en condiciones fisiológicas normales. 25 3.8 Vesículas extracelulares en cáncer 26 4. DISEÑO METODOLÓGICO 27 4.1 Tipo de estudio y alcance 27 4.2 Universo y población 27 4.3 Muestra 27 4.4. Criterios de elegibilidad 27 4.4.1. Criterios de inclusión 27 4.4.2. Criterios de exclusión 28 4.5. Instrumento de recolección de la información 28 4.7. Motor de búsqueda 29 4.8. Cronograma de actividades 30 4.9. Presupuesto y fuentes de financiación 30 6. RESULTADOS 31 6.1. Vesículas extracelulares y su clasificación 31 5.1.1. Biogénesis 31 5.1.2. Funciones fisiológicas 32 5.1.3. Composición de las vesículas extracelulares 33 5.2. Métodos de aislamiento y caracterización de las vesículas extracelulares. 34 5 5.2.1. Métodos de aislamiento de vesículas extracelulares. 34 6.1 Aplicaciones de vesículas extracelulares en el diagnóstico, pronóstico, tratamiento y quimiorresistencia del cáncer de ovario. 40 6.1.1 Vesículas Extracelulares: Herramientas Potenciales en el Diagnóstico Temprano del Cáncer de Ovario 41 5.3.2 Análisis de pronóstico del Cáncer de Ovario mediante vesículas extracelulares. 42 5.3.4. EV 's en quimiorresistencia al tratamiento de cáncer de ovario 44 7. DISCUSIÓN 45 8. CONCLUSIONES 49 9. REFERENCIAS BIBLIOGRÁFICAS 50 10. ANEXOS60 | |
| dc.format.extent | 67p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://repositorio.universidadmayor.edu.co/handle/unicolmayor/7249 | |
| dc.language.iso | spa | |
| dc.publisher | Unievrsidad Colegio Mayor de Cundinamarca | |
| dc.publisher.faculty | Facultad de Ciencias de la Salud | |
| dc.publisher.place | Bogota | |
| dc.publisher.program | Bacteriología y Laboratorio Clínico | |
| dc.relation.references | Tan DS, Agarwal R, Kaye SB. Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol. nouember 2006;7(11):925–34. | |
| dc.relation.references | Filipazzi P, Bürdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. augustus 2012;22(4):342–9. | |
| dc.relation.references | Orr B, Edwards RP. Diagnosis and Treatment of Ovarian Cancer. T. 32, Hematology/Oncology Clinics of North America. 2018. | |
| dc.relation.references | Tian W, Lei N, Zhou J, Chen M, Guo R, Qin B, et al. Extracellular vesicles in ovarian cancer chemoresistance, metastasis, and immune evasion. Cell Death Dis. 18 ianuarius 2022;13(1):64. | |
| dc.relation.references | World Health Organization. Scientific Reports. 2018. Estimated Cancer Incidence, Mortality andPrevalence Worldwide in 2018. | |
| dc.relation.references | Globocan Project de la Organización Mundial de la Salud respecto. GLOBOCAN 2018: Incidencia, mortalidad y prevalencia estimadas del cáncer a nivel mundial en 2018 [Internet]. 2018. | |
| dc.relation.references | Martínez-Ospina AP, Porras-Ramírez A, Rico-Mendoza A. Epidemiologia de cáncer de ovario colombia 2009- 2016. Rev Chil Obstet Ginecol. december 2019;84(6):480–9. | |
| dc.relation.references | Carollo E, Paris B, Samuel P, Pantazi P, Bartelli TF, Dias-Neto E, et al. Detecting ovarian cancer using extracellular vesicles: progress and possibilities. Biochem Soc Trans. 28 februarius 2019;47(1):295–304. | |
| dc.relation.references | Dorayappan KDP, Wallbillich JJ, Cohn DE, Selvendiran K. The biological significance and clinical applications of exosomes in ovarian cancer. Gynecol Oncol. iulius 2016;142(1):199–205. | |
| dc.relation.references | Feng W, Dean DC, Hornicek FJ, Shi H, Duan Z. Exosomes promote pre-metastatic niche formation in ovarian cancer. Mol Cancer. 13 december 2019;18(1):124. | |
| dc.relation.references | Tang MKS, Yue PYK, Ip PP, Huang RL, Lai HC, Cheung ANY, et al. Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat Commun. 11 iunius 2018;9(1):2270. | |
| dc.relation.references | Shenoy GN, Loyall J, Berenson CS, Kelleher RJ, Iyer V, Balu-Iyer S V., et al. Sialic Acid–Dependent Inhibition of T Cells by Exosomal Ganglioside GD3 in Ovarian Tumor Microenvironments. The Journal of Immunology. 15 december 2018;201(12):3750–8. | |
| dc.relation.references | Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 1 ianuarius 2022;12(1):31–46. | |
| dc.relation.references | Arneth B. Tumor Microenvironment. Medicina (B Aires). 30 december 2019;56(1):15. | |
| dc.relation.references | Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. ianuarius 2000;100(1):57–70. | |
| dc.relation.references | Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. martius 2011;144(5):646–74. | |
| dc.relation.references | Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular Senescence: Defining a Path Forward. Cell. october 2019;179(4):813–27. | |
| dc.relation.references | Lee S, Schmitt CA. The dynamic nature of senescence in cancer. Nat Cell Biol. 2 ianuarius 2019;21(1):94–101. | |
| dc.relation.references | Wang B, Kohli J, Demaria M. Senescent Cells in Cancer Therapy: Friends or Foes? Trends Cancer. october 2020;6(10):838–57. | |
| dc.relation.references | Książek K. Where does cellular senescence belong in the pathophysiology of ovarian cancer? Semin Cancer Biol. iunius 2022;81:14–23. | |
| dc.relation.references | Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis. 1 ianuarius 2010;31(1):9–18. | |
| dc.relation.references | Araya Oviedo A, Paizano Vanega G. Cáncer de ovario. Revista Medica Sinergia. 1 iulius 2021;6(7):e690. | |
| dc.relation.references | Van Gorp T, Amant F, Neven P, Vergote I, Moerman P. Endometriosis and the development of malignant tumours of the pelvis. A review of literature. Best Pract Res Clin Obstet Gynaecol. aprilis 2004;18(2):349–71. | |
| dc.relation.references | Bolton KL. Association Between <emph type="ital">BRCA1</emph> and <emph type="ital">BRCA2</emph> Mutations and Survival in Women With Invasive Epithelial Ovarian Cancer. JAMA. 25 ianuarius 2012;307(4):382. | |
| dc.relation.references | Gates MA, Rosner BA, Hecht JL, Tworoger SS. Risk Factors for Epithelial Ovarian Cancer by Histologic Subtype. Am J Epidemiol. 1 ianuarius 2010;171(1):45–53. | |
| dc.relation.references | Meinhold-Heerlein I, Fotopoulou C, Harter P, Kurzeder C, Mustea A, Wimberger P, et al. The new WHO classification of ovarian, fallopian tube, and primary peritoneal cancer and its clinical implications. Arch Gynecol Obstet. 19 aprilis 2016;293(4):695–700. | |
| dc.relation.references | Prat J. Ovarian carcinomas: five distinct diseases with different origins, genetic alterations, and clinicopathological features. Virchows Archiv. 10 martius 2012;460(3):237–49. | |
| dc.relation.references | Hernández D GYMCACAAP. CARCINOMAS EPITELIALES DEL OVARIO DE ALTO Y BAJO GRADO. 26 februarius 2015;24(2):105–12. | |
| dc.relation.references | Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers. 25 augustus 2016;2(1):16061. | |
| dc.relation.references | Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers. 25 augustus 2016;2(1):16061. | |
| dc.relation.references | O’Donovan PJ, Livingston DM. BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis. 1 iunius 2010;31(6):961–7. | |
| dc.relation.references | Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, Sharma R, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. maius 2010;221(1):49–56. | |
| dc.relation.references | Schuijer M, Berns EMJJ. TP53 and ovarian cancer. Hum Mutat. martius 2003;21(3):285–91. | |
| dc.relation.references | Brachova P, Thiel K, Leslie K. The Consequence of Oncomorphic TP53 Mutations in Ovarian Cancer. Int J Mol Sci. 23 september 2013;14(9):19257–75. | |
| dc.relation.references | Kaldawy A, Segev Y, Lavie O, Auslender R, Sopik V, Narod SA. Low-grade serous ovarian cancer: A review. Gynecol Oncol. nouember 2016;143(2):433–8. | |
| dc.relation.references | Xu W, Rush J, Rickett K, Coward JIG. Mucinous ovarian cancer: A therapeutic review. Crit Rev Oncol Hematol. iunius 2016;102:26–36. | |
| dc.relation.references | Kelemen LE, Köbel M. Mucinous carcinomas of the ovary and colorectum: different organ, same dilemma. Lancet Oncol. october 2011;12(11):1071–80. | |
| dc.relation.references | Gemignani ML, Schlaerth AC, Bogomolniy F, Barakat RR, Lin O, Soslow R, et al. Role of KRAS and BRAF gene mutations in mucinous ovarian carcinoma. Gynecol Oncol. augustus 2003;90(2):378–81. | |
| dc.relation.references | Crane EK, Brown J. Early-stage mucinous ovarian cancer: A review. Gynecol Oncol. iunius 2018;149(3):598–604. | |
| dc.relation.references | Anglesio MS, Kommoss S, Tolcher MC, Clarke B, Galletta L, Porter H, et al. Molecular characterization of mucinous ovarian tumours supports a stratified treatment approach with <scp>HER2</scp> targeting in 19% of carcinomas. J Pathol. 17 ianuarius 2013;229(1):111–20. | |
| dc.relation.references | Ryland GL, Hunter SM, Doyle MA, Caramia F, Li J, Rowley SM, et al. Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors. Genome Med. 7 december 2015;7(1):87. | |
| dc.relation.references | Chou Y, Jeng Y, Kao H, Chen TJ, Mao T, Lin M. Differentiation of ovarian mucinous carcinoma and metastatic colorectal adenocarcinoma by immunostaining with β‐catenin. Histopathology. 24 augustus 2003;43(2):151–6. | |
| dc.relation.references | Fadare O, Parkash V. Pathology of Endometrioid and Clear Cell Carcinoma of the Ovary. Surg Pathol Clin. iunius 2019;12(2):529–64. | |
| dc.relation.references | Gadducci A, Multinu F, Cosio S, Carinelli S, Ghioni M, Aletti GD. Clear cell carcinoma of the ovary: Epidemiology, pathological and biological features, treatment options and clinical outcomes. Gynecol Oncol. september 2021;162(3):741–50. | |
| dc.relation.references | Prat J, D’Angelo E, Espinosa I. Ovarian carcinomas: at least five different diseases with distinct histological features and molecular genetics. Hum Pathol. october 2018;80:11–27. | |
| dc.relation.references | Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. ARID1A Mutations in Endometriosis-Associated Ovarian Carcinomas. New England Journal of Medicine. 14 october 2010;363(16):1532–43. | |
| dc.relation.references | Yamamoto S, Tsuda H, Takano M, Tamai S, Matsubara O. PIK3CA mutations and loss of ARID1A protein expression are early events in the development of cystic ovarian clear cell adenocarcinoma. Virchows Archiv. 26 ianuarius 2012;460(1):77–87. | |
| dc.relation.references | Dinkelspiel HE, Matrai C, Pauk S, Pierre-Louis A, Chiu YL, Gupta D, et al. Does the Presence of Endometriosis Affect Prognosis of Ovarian Cancer? Cancer Invest. 15 martius 2016;34(3):148–54. | |
| dc.relation.references | Kim SI, Lee JW, Lee M, Kim HS, Chung HH, Kim JW, et al. Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing. Gynecol Oncol. februarius 2018;148(2):375–82. | |
| dc.relation.references | Sainz de la Cuesta R, Eichhorn JH, Rice LW, Fuller JAF, Nikrui N, Goff BA. Histologic Transformation of Benign Endometriosis to Early Epithelial Ovarian Cancer. Gynecol Oncol. februarius 1996;60(2):238–44. | |
| dc.relation.references | Koshiyama M, Matsumura N, Konishi I. Recent Concepts of Ovarian Carcinogenesis: Type I and Type II. Biomed Res Int. 2014;2014:1–11. | |
| dc.relation.references | K Obata 1 SJMRHWAHGCTEJTIGC. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer research- PubMed. 18 maius 1998;58(10):2095–8. | |
| dc.relation.references | Catasús L, Bussaglia E, Rodrı́guez I, Gallardo A, Pons C, Irving JA, et al. Molecular genetic alterations in endometrioid carcinomas of the ovary: Similar frequency of beta-catenin abnormalities but lower rate of microsatellite instability and PTEN alterations than in uterine endometrioid carcinomas. Hum Pathol. nouember 2004;35(11):1360–8. | |
| dc.relation.references | Pierson WE, Peters PN, Chang MT, Chen L may, Quigley DA, Ashworth A, et al. An integrated molecular profile of endometrioid ovarian cancer. Gynecol Oncol. aprilis 2020;157(1):55–61. | |
| dc.relation.references | Roth LM, Gersell DJ, Ulbright TM. Ovarian Brenner Tumors and Transitional Cell Carcinoma. International Journal of Gynecological Pathology. aprilis 1993;12(2):128–33. | |
| dc.relation.references | Roma AA, Masand RP. Ovarian Brenner tumors and Walthard nests: a histologic and immunohistochemical study. Hum Pathol. december 2014;45(12):2417–22. | |
| dc.relation.references | Morales-Palacios E VPDQCJ. Borderline Brenner tumor. T. 42 (4). 2016. p. 530–6. | |
| dc.relation.references | Costeira F de S, Félix A, Cunha TM. Brenner tumors. Br J Radiol. 1 februarius 2022;95(1130). | |
| dc.relation.references | Berek JS, Renz M, Kehoe S, Kumar L, Friedlander M. Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. International Journal of Gynecology & Obstetrics. 20 october 2021;155(S1):61–85. | |
| dc.relation.references | Redondo Sánchez A, Castelo Fernández B, Gómez Raposo C, Cruz Castellanos P. Cáncer de ovario. Medicine - Programa de Formación Médica Continuada Acreditado. maius 2017;12(34):2024–35. | |
| dc.relation.references | Domingo Del Pozo S, Leal VL, Coronado Martín PJ, García ÁT, Moreno GM, Luis J, et al. Cáncer de ovario 2022. Revista Oficial de la Sociedad Española de Ginecología y Obstetricia. 2022; | |
| dc.relation.references | Lawrie TA, Winter-Roach BA, Heus P, Kitchener HC. Adjuvant (post-surgery) chemotherapy for early stage epithelial ovarian cancer. Cochrane Database of Systematic Reviews. 17 december 2015;2016(9). | |
| dc.relation.references | Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 23 december 2018;7(1). | |
| dc.relation.references | Raposo G, Niel G, Stahl PD. Extracellular vesicles and homeostasis—An emerging field in bioscience research. FASEB Bioadv. 17 iunius 2021;3(6):456–8. | |
| dc.relation.references | Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. Int J Mol Sci. 6 februarius 2016;17(2):171. | |
| dc.relation.references | Yan C, Yu J. Noncoding RNA in Extracellular Vesicles Regulate Differentiation of Mesenchymal Stem Cells. Frontiers in Dental Medicine. 8 martius 2022;2. | |
| dc.relation.references | Stavrou A, Ortiz A. Extracellular Vesicles: A Novel Tool in Nanomedicine and Cancer Treatment. Cancers (Basel). 14 september 2022;14(18):4450. | |
| dc.relation.references | Sullivan R, Maresh G, Zhang X, Salomon C, Hooper J, Margolin D, et al. The Emerging Roles of Extracellular Vesicles As Communication Vehicles within the Tumor Microenvironment and Beyond. Front Endocrinol (Lausanne). 8 augustus 2017;8. | |
| dc.relation.references | Sullivan R, Maresh G, Zhang X, Salomon C, Hooper J, Margolin D, et al. The Emerging Roles of Extracellular Vesicles As Communication Vehicles within the Tumor Microenvironment and Beyond. Front Endocrinol (Lausanne). 8 augustus 2017;8. | |
| dc.relation.references | Kalluri R. The biology and function of exosomes in cancer. Journal of Clinical Investigation. 1 aprilis 2016;126(4):1208–15. | |
| dc.relation.references | Novoa-Herrán S. Retos y oportunidades en el estudio de vesículas extracelulares: contexto institucional a nivel mundial y situación actual en Colombia. Biomédica. 22 september 2021;41(3):555–89. | |
| dc.relation.references | Amarasinghe I, Phillips W, Hill AF, Cheng L, Helbig KJ, Willms E, et al. Cellular communication through extracellular vesicles and lipid droplets. Journal of Extracellular Biology. martius 2023;2(3). | |
| dc.relation.references | Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol. 6 aprilis 2016;36(3):301–12. | |
| dc.relation.references | Pascual-Antón L, Cardeñes B, Sainz de la Cuesta R, González-Cortijo L, López-Cabrera M, Cabañas C, et al. Mesothelial-to-Mesenchymal Transition and Exosomes in Peritoneal Metastasis of Ovarian Cancer. Int J Mol Sci. 25 october 2021;22(21):11496. | |
| dc.relation.references | Mashouri L, Yousefi H, Aref AR, Ahadi A mohammad, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2 december 2019;18(1):75. | |
| dc.relation.references | Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, et al. The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. september 2021;11(9):2783–97. | |
| dc.relation.references | Beach A, Zhang HG, Ratajczak MZ, Kakar SS. Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res. 25 december 2014;7(1):14. | |
| dc.relation.references | Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, et al. The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. september 2021;11(9):2783–97. | |
| dc.relation.references | Crow J, Atay S, Banskota S, Artale B, Schmitt S, Godwin AK. Exosomes as mediators of platinum resistance in ovarian cancer. Oncotarget. 14 februarius 2017;8(7):11917–36. | |
| dc.relation.references | Crow J, Atay S, Banskota S, Artale B, Schmitt S, Godwin AK. Exosomes as mediators of platinum resistance in ovarian cancer. Oncotarget. 14 februarius 2017;8(7):11917–36. | |
| dc.relation.references | Gandham S, Su X, Wood J, Nocera AL, Alli SC, Milane L, et al. Technologies and Standardization in Research on Extracellular Vesicles. Trends Biotechnol. october 2020;38(10):1066–98. | |
| dc.relation.references | Yuana Y, Levels J, Grootemaat A, Sturk A, Nieuwland R. Co‐isolation of extracellular vesicles and high‐density lipoproteins using density gradient ultracentrifugation. J Extracell Vesicles. 8 ianuarius 2014;3(1). | |
| dc.relation.references | Karimi N, Cvjetkovic A, Jang SC, Crescitelli R, Hosseinpour Feizi MA, Nieuwland R, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cellular and Molecular Life Sciences. 13 augustus 2018;75(15):2873–86. | |
| dc.relation.references | An M, Wu J, Zhu J, Lubman DM. Comparison of an Optimized Ultracentrifugation Method versus Size-Exclusion Chromatography for Isolation of Exosomes from Human Serum. J Proteome Res. 5 october 2018;17(10):3599–605. | |
| dc.relation.references | Liangsupree T, Multia E, Riekkola ML. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A. ianuarius 2021;1636:461773. | |
| dc.relation.references | Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 7 februarius 2024;13(2). | |
| dc.relation.references | Shelke GV, Lässer C, Gho YS, Lötvall J. Importance of exosome depletion protocols to eliminate functional and RNA‐containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 30 ianuarius 2014;3(1). | |
| dc.relation.references | Gardiner C, Di Vizio D, Sahoo S, Théry C, Witwer KW, Wauben M, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 31 ianuarius 2016;5(1). | |
| dc.relation.references | Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 22 ianuarius 2014;3(1). | |
| dc.relation.references | Nordin JZ, Lee Y, Vader P, Mäger I, Johansson HJ, Heusermann W, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine. maius 2015;11(4):879–83. | |
| dc.relation.references | Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 8 augustus 2018;560(7718):382–6. | |
| dc.relation.references | Daassi D, Mahoney KM, Freeman GJ. The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol. 21 aprilis 2020;20(4):209–15. | |
| dc.relation.references | Feng W, Dean DC, Hornicek FJ, Shi H, Duan Z. Exosomes promote pre-metastatic niche formation in ovarian cancer. Mol Cancer. 13 december 2019;18(1):124. | |
| dc.relation.references | Bhavsar D, Raguraman R, Kim D, Ren X, Munshi A, Moore K, et al. Exosomes in diagnostic and therapeutic applications of ovarian cancer. J Ovarian Res. 25 maius 2024;17(1):113. | |
| dc.relation.references | Weiner‐Gorzel K, Dempsey E, Milewska M, McGoldrick A, Toh V, Walsh A, et al. Overexpression of the microRNA miR‐433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med. 15 maius 2015;4(5):745–58. | |
| dc.relation.references | Feng Y, Hang W, Sang Z, Li S, Xu W, Miao Y, et al. Identification of exosomal and non-exosomal microRNAs associated with the drug resistance of ovarian cancer. Mol Med Rep. 5 martius 2019; | |
| dc.relation.references | King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 24 december 2012;12(1):421. | |
| dc.relation.references | Vaksman O, Tropé C, Davidson B, Reich R. Exosome-derived miRNAs and ovarian carcinoma progression. Carcinogenesis. september 2014;35(9):2113–20. | |
| dc.relation.references | Meng X, Müller V, Milde-Langosch K, Trillsch F, Pantel K, Schwarzenbach H. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget. 29 martius 2016;7(13):16923–35. | |
| dc.relation.references | Shimizu A, Sawada K, Kimura T. Pathophysiological Role and Potential Therapeutic Exploitation of Exosomes in Ovarian Cancer. Cells. 27 martius 2020;9(4):814. | |
| dc.relation.references | Pan C, Stevic I, Müller V, Ni Q, Oliveira‐Ferrer L, Pantel K, et al. Exosomal micro <scp>RNA</scp> s as tumor markers in epithelial ovarian cancer. Mol Oncol. 9 nouember 2018;12(11):1935–48. | |
| dc.relation.references | Chen Z, Liang Q, Zeng H, Zhao Q, Guo Z, Zhong R, et al. Exosomal CA125 as A Promising Biomarker for Ovarian Cancer Diagnosis. J Cancer. 2020;11(21):6445–53. | |
| dc.relation.references | Li P, Bai Y, Shan B, Zhang W, Liu Z, Zhu Y, et al. Exploration of Potential Diagnostic Value of Protein Content in Serum Small Extracellular Vesicles for Early-Stage Epithelial Ovarian Carcinoma. Front Oncol. 15 september 2021;11. | |
| dc.relation.references | Zhao M, Ding JX, Zeng K, Zhao J, Shen F, Yin YX, et al. Heat shock protein 27: a potential biomarker of peritoneal metastasis in epithelial ovarian cancer? Tumor Biology. 6 februarius 2014;35(2):1051–6. | |
| dc.relation.references | Zhang W, Peng P, Ou X, Shen K, Wu X. Ovarian cancer circulating extracelluar vesicles promote coagulation and have a potential in diagnosis: an iTRAQ based proteomic analysis. BMC Cancer. 12 december 2019;19(1):1095. | |
| dc.relation.references | Im H, Shao H, Park Y Il, Peterson VM, Castro CM, Weissleder R, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 20 maius 2014;32(5):490–5. | |
| dc.relation.references | Carollo E, Paris B, Samuel P, Pantazi P, Bartelli TF, Dias-Neto E, et al. Detecting ovarian cancer using extracellular vesicles: progress and possibilities. Biochem Soc Trans. 28 februarius 2019;47(1):295–304. | |
| dc.relation.references | Zhu K, Ma J, Tian Y, Liu Q, Zhang J. An immune-related exosome signature predicts the prognosis and immunotherapy response in ovarian cancer. BMC Womens Health. 18 ianuarius 2024;24(1):49. | |
| dc.relation.references | Yokoi A, Yoshioka Y, Yamamoto Y, Ishikawa M, Ikeda S ichi, Kato T, et al. Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat Commun. 6 martius 2017;8(1):14470. | |
| dc.relation.references | Dorayappan KDP, Wallbillich JJ, Cohn DE, Selvendiran K. The biological significance and clinical applications of exosomes in ovarian cancer. Gynecol Oncol. iulius 2016;142(1):199–205. | |
| dc.relation.references | Keller S, König AK, Marmé F, Runz S, Wolterink S, Koensgen D, et al. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett. iunius 2009;278(1):73–81. | |
| dc.relation.references | Zhang X, Liu L, Tang M, Li H, Guo X, Yang X. The effects of umbilical cord-derived macrophage exosomes loaded with cisplatin on the growth and drug resistance of ovarian cancer cells. Drug Dev Ind Pharm. 2 iulius 2020;46(7):1150–62. | |
| dc.relation.references | Datta A, Kim H, McGee L, Johnson AE, Talwar S, Marugan J, et al. High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: A drug repurposing strategy for advanced cancer. Sci Rep. 25 maius 2018;8(1):8161. | |
| dc.relation.references | Datta A, Kim H, McGee L, Johnson AE, Talwar S, Marugan J, et al. High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: A drug repurposing strategy for advanced cancer. Sci Rep. 25 maius 2018;8(1):8161. | |
| dc.relation.references | Nakamura K, Sawada K, Kinose Y, Yoshimura A, Toda A, Nakatsuka E, et al. Exosomes Promote Ovarian Cancer Cell Invasion through Transfer of CD44 to Peritoneal Mesothelial Cells. Molecular Cancer Research. 1 ianuarius 2017;15(1):78–92. | |
| dc.relation.references | Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2 aprilis 2016;5(4):e1071008. | |
| dc.relation.references | Gao D, Jiang L. Exosomes in cancer therapy: a novel experimental strategy. Am J Cancer Res. 2018;8(11):2165–75. | |
| dc.relation.references | Linares R, Tan S, Gounou C, Arraud N, Brisson AR. High‐speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles. 23 ianuarius 2015;4(1). | |
| dc.relation.references | Wei R, Zhao L, Kong G, Liu X, Zhu S, Zhang S, et al. Combination of Size-Exclusion Chromatography and Ultracentrifugation Improves the Proteomic Profiling of Plasma-Derived Small Extracellular Vesicles. Biol Proced Online. 23 december 2020;22(1):12. | |
| dc.relation.references | Shen S, Wang C, Gu J, Song F, Wu X, Qian F, et al. A Predictive Model for Initial Platinum‐Based Chemotherapy Efficacy in Patients with Postoperative Epithelial Ovarian Cancer Using Tissue‐Derived Small Extracellular Vesicles. J Extracell Vesicles. 6 augustus 2024;13(8). | |
| dc.relation.references | Buzás EI, Gardiner C, Lee C, Smith ZJ. Single particle analysis: Methods for detection of platelet extracellular vesicles in suspension (excluding flow cytometry). Platelets. 3 aprilis 2017;28(3):249–55. | |
| dc.relation.references | Li J, Sherman-Baust CA, Tsai-Turton M, Bristow RE, Roden RB, Morin PJ. Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer. 20 december 2009;9(1):244. | |
| dc.relation.references | Li C, Wang S, Ma X, Wang T, Lu R, Jia X, et al. Ranitidine as an adjuvant regulates macrophage polarization and activates CTLs through the PI3K-Akt2 signaling pathway. Int Immunopharmacol. martius 2023;116:109729. | |
| dc.relation.references | Zheng B, Geng L, Zeng L, Liu F, Huang Q. AKT2 contributes to increase ovarian cancer cell migration and invasion through the AKT2-PKM2-STAT3/NF-κB axis. Cell Signal. maius 2018;45:122–31. | |
| dc.relation.references | Chang YC, Yang YC, Tien CP, Yang CJ, Hsiao M. Roles of Aldolase Family Genes in Human Cancers and Diseases. Trends in Endocrinology & Metabolism. augustus 2018;29(8):549–59. | |
| dc.relation.references | Pérez-Ortiz V RVE. Cistoadenocarcinoma mucinoso ovárico primario gigante. A propósito de un caso. T. 8. 2019. p. 30–4. | |
| dc.relation.references | van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, Functions, and Clinical Relevance of Extracellular Vesicles. Pharmacol Rev. iulius 2012;64(3):676–705. | |
| dc.rights | Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores | spa |
| dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject.proposal | Vesículas extracelulares | |
| dc.subject.proposal | Exosoma, | |
| dc.subject.proposal | Cáncer de ovario | |
| dc.subject.proposal | Terapia basada en exosomas | |
| dc.subject.proposal | Diagnóstico de cáncer | |
| dc.subject.proposal | Metástasis | |
| dc.subject.proposal | Quimiorresistencia | |
| dc.subject.proposal | Biomarcadores | |
| dc.title | Vesículas extracelulares como biomarcadores y agentes terapéuticos en el cáncer de ovario: una revisión sistemática | spa |
| dc.type | Trabajo de grado - Pregrado | |
| dc.type.coar | http://purl.org/coar/resource_type/c_46ec | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TP | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- CA-VESÍCULAS EXTRACELULARES COMO BIOMARCADORES Y AGENTES TERAPÉ - FINAL.docx.pdf
- Tamaño:
- 6.36 MB
- Formato:
- Adobe Portable Document Format
Cargando...
- Nombre:
- CARTA DERECHOS DE AUTOR IIP 2024.docx (64).pdf
- Tamaño:
- 129.32 KB
- Formato:
- Adobe Portable Document Format
Cargando...
- Nombre:
- FORMATO IDENTIFICACIÓN TRABAJOS DE GRADO NATALIA ALEXANDRA BENITO SARMIENTO.pdf
- Tamaño:
- 113.22 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 14.49 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

