Mostrar el registro sencillo del ítem
Genotipificación del promotor de CHRDL2 para la búsqueda de variantes potencialmente relacionadas con la etiología del cáncer colorrectal
dc.contributor.advisor | Posada Buitrago, Martha Lucía | |
dc.contributor.author | Roa Torres, Nasly Yurany | |
dc.date.accessioned | 2021-10-27T21:39:52Z | |
dc.date.available | 2021-10-27T21:39:52Z | |
dc.date.issued | 2019-01 | |
dc.identifier.uri | https://repositorio.universidadmayor.edu.co/handle/unicolmayor/3572 | |
dc.description.abstract | El cáncer colorrectal (CCR) es el resultado de la acumulación de alteraciones genéticas y epigenéticas en el genoma de las células de la mucosa del colon que conduce a la transformación de una célula normal a una célula neoplásica. Variantes en la secuencia de ADN de la región promotora podrían desempeñar un papel importante en la regulación de genes favoreciendo con esto la susceptibilidad a la enfermedad. En el presente estudio se empleó la reacción en cadena de la polimerasa (PCR) con primers específicos y posterior secuenciación de Sanger para la identificación de variantes de baja frecuencia en una región de 595pb del promotor del oncogén CHRDL2 en 45 muestras de biopsias de tejido tumoral procedentes de pacientes diagnosticados con cáncer de colon o recto. La secuenciación de esta región promotora permitió identificar tres polimorfismos de nucleótido único (SNPs): c.-150C<T en 7 muestras, c.-357C<T en 35 muestras y c.-417C<T en 33 muestras. La frecuencia alélica mínima (MAF) reportada en Ensembl determino que estos polimorfismos son frecuentes en la población y por lo tanto no son causa de la patología, lo cual indica que variantes en este fragmento de la región promotora no se relacionan con la etiología del CCR. | spa |
dc.description.tableofcontents | RESUMEN OBJETIVOS 1. INTRODUCCIÓN14 2. ANTECEDENTES15 2.1 MLH115 2.2 APC16 2.3 PMS217 3. MARCO TEÓRICO18 3.1 Epidemiología18 3.2 Factores de riesgo19 3.3 Signos y síntomas20 3.4 Etiología21 3.5 Proteínas morfogénicas óseas24 3.6 Oncogen CHRDL224 3.2 Regiones promotoras y su relación con el cáncer25 4. DISEÑO METODOLÓGICO 4.1.1 Universo26 4.1.2 Población26 4.1.3 Muestra27 4.1.4 Variables27 4.2 TÉCNICAS Y PROCEDIMIENTOS 4.2.1 Extracción de ADN de tejido por método de salting out27 4.2.2 Cuantificación del ADN extraído28 4.2.3 Amplificación de la región promotora del gen CHRDL2 en muestras de tejido tumoral28 4.2.2.1 Diseño de primers29 4.2.3 Visualización de productos de PCR30 4.2.4.1 Purificación de muestras para la reacción de secuenciación30 4.2.4 Secuenciación productos de PCR del fragmento de 595pb del promotor de CHRDL231 4.2.5 Análisis de las secuencias31 5. RESULTADOS 5.1 Datos demográficos32 5.2 Cuantificación y determinación de pureza del ADN extraído34 5.3 Amplificación por PCR de un fragmento de 595pb de CHRDL236 5.3 Análisis de las secuencias37 6. DISCUSIÓN44 7. CONCLUSIONES47 8. PERSPECTIVAS48 | spa |
dc.format.extent | 67p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Universidad Colegio Mayor de Cundinamarca, 2019 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Genotipificación del promotor de CHRDL2 para la búsqueda de variantes potencialmente relacionadas con la etiología del cáncer colorrectal | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.identifier.barcode | 58685 | |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá D.C | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Coppedè, F. (2014). Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World Journal of Gastroenterology, 20(4), p.943. | spa |
dc.relation.references | Jia S, Zhang R, Li Z, Li J. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget. 2017. | spa |
dc.relation.references | Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi M. Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. International Journal of Molecular Sciences. 2017;18(1):197. | spa |
dc.relation.references | Lizarbe M, Calle-Espinosa J, Fernández-Lizarbe E, Fernández-Lizarbe S, Robles M, Olmo N et al. Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BioMed Research International. 2017;2017:1-38. | spa |
dc.relation.references | Puccini A, Berger M, Naseem M, Tokunaga R, Battaglin F, Cao S et al. Colorectal cancer: epigenetic alterations and their clinical implications. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2017;1868(2):439-448. | spa |
dc.relation.references | Al-Sohaily, S., Biankin, A., Leong, R., Kohonen-Corish, M. and Warusavitarne, J. (2012). Molecular pathways in colorectal cancer. Journal of Gastroenterology and Hepatology, 27(9), pp.1423-1431. | spa |
dc.relation.references | Wang Y, Li Z, Li W, Liu S, Han B. Methylation of promoter region of CDX2 gene in colorectal cancer. Oncol Lett. 2016;12(5):3229–33. | spa |
dc.relation.references | John S, George S, Primrose J, Fozard J. Symptoms and signs in patients with colorectal cancer. Colorectal Disease. 2010;13(1):17-25. | spa |
dc.relation.references | Blanco-Calvo M, Concha Á, Figueroa A, Garrido F, Valladares-Ayerbes M. Colorectal Cancer Classification and Cell Heterogeneity: A Systems Oncology Approach. International Journal of Molecular Sciences. 2015;16(6):13610-13632. | spa |
dc.relation.references | Akkoca AN, Yanık S, Özdemir ZT, Cihan FG, Sayar S, Cincin TG, et al. TNM and modified Dukes staging along with the demographic characteristics of patients with colorectal carcinoma. Int J Clin Exp Med. 2014;7(9):2828–35. | spa |
dc.relation.references | Fleming M, Ravula S, Tatishchev SF, Wang HL. Colorectal carcinoma: Pathologic aspects. J Gastrointest Oncol. 2012;3(3):153–73. | spa |
dc.relation.references | Rodriguez-Salas, N., Dominguez, G., Barderas, R., Mendiola, M., García-Albéniz, X., Maurel, J. and Batlle, J. (2017). Clinical relevance of colorectal cancer molecular subtypes. Critical Reviews in Oncology/Hematology, 109, pp.9-19. | spa |
dc.relation.references | Bardhan K, Liu K. Epigenetics and Colorectal Cancer Pathogenesis. Cancers. 2013;5(2):676-713. | spa |
dc.relation.references | Grady, W. and Carethers, J. (2008). Genomic and Epigenetic Instability in Colorectal Cancer Pathogenesis. Gastroenterology, 135(4), pp.1079-1099. | spa |
dc.relation.references | Draht MXG, Niessen H, Engeland M Van. Promoter CpG island methylation markers in colorectal cancer : the road ahead R eview. 2012;4:179–94. | spa |
dc.relation.references | Müller M, Ibrahim A, Arends M. Molecular pathological classification of colorectal cancer. Virchows Archiv. 2016;469(2):125-134. | spa |
dc.relation.references | Kim MS, Lee J, Sidransky D. DNA methylation markers in colorectal cancer. Cancer Metastasis Rev. 2010;29(1):181–206 | spa |
dc.relation.references | David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol. 2018;19(7):419–35. | spa |
dc.relation.references | Chruścik A, Gopalan V, Lam AK yin. The clinical and biological roles of transforming growth factor beta in colon cancer stem cells: A systematic review. Eur J Cell Biol [Internet]. 2017;(November):0–1. Available from: http://dx.doi.org/10.1016/j.ejcb.2017.11.001 | spa |
dc.relation.references | Bierie B, Moses HL. TGF-β and cancer. Cytokine Growth Factor Rev. 2006;17(1–2):29–40. | spa |
dc.relation.references | Sun J, Liu X, Gao H, Zhang L, Ji Q, Wang Z et al. Overexpression of colorectal cancer oncogene CHRDL2 predicts a poor prognosis. Oncotarget. 2016;. | spa |
dc.relation.references | Kodach L, Bleuming S, Musler A, Peppelenbosch M, Hommes D, van den Brink G et al. The bone morphogenetic protein pathway is active in human colon adenomas and inactivated in colorectal cancer. Cancer. 2008;112(2):300-306. | spa |
dc.relation.references | Villalba M, Evans SR, Vidal-Vanaclocha F, Calvo A. Role of TGF-β in metastatic colon cancer: it is finally time for targeted therapy. Cell Tissue Res. 2017;370(1):29–39. | spa |
dc.relation.references | Cyr-depauw C, Northey JJ, Tabariès S, Annis MG, Dong Z, Cory S. Breast Cancer Cell Migration and Invasion. 2016;36(10):1509–25. | spa |
dc.relation.references | Hardwick JC, Kodach LL, Offerhaus GJ, Van Den Brink GR. Bone morphogenetic protein signalling in colorectal cancer. Nat Rev Cancer. 2008;8(10):806–12. | spa |
dc.relation.references | Itoh N, Ohta H. Secreted bone morphogenetic protein antagonists of the Chordin family. BioMolecular Concepts. 2010;1(3-4). | spa |
dc.relation.references | Melton C, Reuter JA, Spacek D V., Snyder M. Recurrent somatic mutations in regulatory regions of human cancer genomes. Nat Genet. 2015;47(7):710–6. | spa |
dc.relation.references | Deng N, Zhou H, Fan H, Yuan Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget [Internet]. 2017;8(66):110635–49. Available from: http://www.oncotarget.com/fulltext/22372 | spa |
dc.relation.references | Sereewattanawoot S, Suzuki A, Seki M, Sakamoto Y, Kohno T, Sugano S, et al. Identification of potential regulatory mutations using multi-omics analysis and haplotyping of lung adenocarcinoma cell lines. Sci Rep. 2018;8(1):1–14. | spa |
dc.relation.references | Saifullah, Tsukahara T. Genotyping of single nucleotide polymorphisms using the SNP- RFLP method. Biosci Trends [Internet]. 2018;12(3):240–6. Available from: http://10.0.21.206/bst.2018.01102%0Ahttp://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=130519593&lang=pt-br&site=ehost-live | spa |
dc.relation.references | Akl E a, Doormaal FF Van, Barba M, Kamath G, Kim SY, Kuipers S, et al. Promoter polymorphisms of DNMT3B and the risk of colorectal cancer in Chinese: a case-control study : a Cochrane systematic review. 2008;10:1–10. | spa |
dc.relation.references | Neagoe A, Molnar A, Seicean A, Serban A et al. Risk factors for colorectal cancer: an Epidemiologic Descriptive Study of a Series of 333 patients. Medicine and pharmacy.[Internet] 2004[ citado 2018 septiembre 22].Available in: http://www.jgld.ro/32004/187-193.pdf | spa |
dc.relation.references | Tan C, Xiang D.KRAS mutation testing in metastatic colorectal cancer. World Journal of clinical oncology.[Internet] 2012[ citado 2018 septiembre 25].Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468848/ | spa |
dc.relation.references | Therkildsen C, Bergmann T, Schnack T, Ladelund S et al.The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis.Acta oncologica.[Internet] 2014[ citado 2018 septiembre 25].Available in: https://www.tandfonline.com/doi/full/10.3109/0284186X.2014.895036 | spa |
dc.relation.references | Lan X, Zhou J, Chen Z, Wee-Joo C. p53 mutations in colorectal cancer- molecular pathogenesis and pharmacological reactivation. World Journal of clinical oncology.[Internet] 2015[ citado 2018 septiembre 25].Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4284363/ | spa |
dc.relation.references | Chen H, Zhou L, Wu X, Li R et al. The PI3K/AKT pathway in the pathogenesis of prostate cancer. Department of Urology. .[Internet] 2016[ citado 2018 septiembre 25].Available in: https://www.bioscience.org/2016/v21/af/4443/fulltext.htm | spa |
dc.relation.references | G CYR, Corredor M, O LM. A Review of Polymorphisms in Genes Involved in the Development of Gastric Cancer. 2016; avalilable http://www.scielo.org.co/pdf/rcg/v31n4/en_v31n4a09.pdf | spa |
dc.relation.references | Barras D. BRAF Mutation in Colorectal Cancer: An Update.Libertas academia. [Internet] 2015[ citado 2018 septiembre 19]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562608/pdf/bic-suppl.1-2015-009.pdf | spa |
dc.relation.references | Strickler J, Christina W, Tanios S.Targeting BRAF in metastatic colorectal cancer: Maximizing molecular approaches.Cancer treatment Reviews. [Internet] 2015[ citado 2018 septiembre 19]. Available in: https://www.sciencedirect.com/science/article/pii/S0305737217301299 | spa |
dc.relation.references | Hamzeh K, Goode E, Sclafani F, Gerlinger M et al.Treatment and Survival Outcome of BRAF-Mutated Metastatic Colorectal Cancer: A Retrospective Matched Case-Control Study.Clinical colorectal cancer.[Internet] 2017[ citado 2018 septiembre 19]. Available in: https://www.clinical-colorectal-cancer.com/article/S1533-0028(17)30069-5/pdf | spa |
dc.relation.references | Zhaol M, Mishra L, Dengl C. The role of TGF- β/SMAD4 signaling in cancer. International Journal of Biological Sciences. [Internet] 2018[ citado 2018 septiembre 19]; 14(2): 111-123.Available in: http://www.ijbs.com/v14p0111.pdf | spa |
dc.relation.references | Zhang B, Chen X, Singh K, Washington M et al. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway. British Journal of Cancer. [Internet] 2014[ citado 2018 septiembre 19]; 110, 946–957.Available in: https://www.nature.com/articles/bjc2013789.pdf | spa |
dc.relation.references | Chien-Hung Y,Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers.Molecular cancer. [Internet] 2018[ citado 2018 septiembre | spa |
dc.relation.references | Theiss AP, Chafin D, Bauer DR, Grogan TM, Baird GS. Immunohistochemistry of colorectal cancer biomarker phosphorylation requires controlled tissue fixation. PLoS One. 2014;9(11):1–6. | spa |
dc.relation.references | Akhoodi S, Sun D, Von der Lehr N, Klotz K et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Research. [Internet] 2007[ citado 2018 septiembre 19]. Available in: http://cancerres.aacrjournals.org/content/67/19/9006.long | spa |
dc.relation.references | Barras D. BRAF Mutation in Colorectal Cancer: An Update.Libertas academia. [Internet] 2015[ citado 2018 septiembre 19]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562608/pdf/bic-suppl.1-2015-009.pdf | spa |
dc.relation.references | Strickler J, Christina W, Tanios S.Targeting BRAF in metastatic colorectal cancer: Maximizing molecular approaches.Cancer treatment Reviews. [Internet] 2015[ citado 2018 septiembre 19]. Available in: https://www.sciencedirect.com/science/article/pii/S0305737217301299 | spa |
dc.relation.references | Hamzeh K, Goode E, Sclafani F, Gerlinger M et al.Treatment and Survival Outcome of BRAF-Mutated Metastatic Colorectal Cancer: A Retrospective Matched Case-Control Study.Clinical colorectal cancer.[Internet] 2017[ citado 2018 septiembre 19]. Available in: https://www.clinical-colorectal-cancer.com/article/S1533-0028(17)30069-5/pdf | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.lemb | Nucleótido | |
dc.subject.lemb | Polimerasa | |
dc.subject.lemb | ADN | |
dc.subject.lemb | Célula Neoplásica | |
dc.subject.proposal | Cáncer Colorrectal | spa |
dc.subject.proposal | CHRDL2 | spa |
dc.subject.proposal | Región Promotora | spa |
dc.subject.proposal | Oncogen | spa |
dc.subject.proposal | Secuenciación | spa |
dc.subject.proposal | Polimorfismos | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |