dc.contributor.advisor | Posada Buitrago, Martha Lucía | |
dc.contributor.author | Cortés Hernández, Alexandra | |
dc.date.accessioned | 2021-11-05T02:33:23Z | |
dc.date.available | 2021-11-05T02:33:23Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://repositorio.universidadmayor.edu.co/handle/unicolmayor/3605 | |
dc.description.abstract | La marchitez bacteriana en cultivos de tomate (Solanum lycopersicum),
ocasionada por Ralstonia solanacearum, causante de grandes pérdidas en los
cultivos. Las plantas poseen un elaborado sistema inmune, no obstante, los
fitopatógenos buscan estrategias para evadir sus mecanismos de defensa y
lograr invadirlas, causando que los agricultores realicen una alta inversión
económica para su control.
El objetivo de este trabajo es la búsqueda de regiones homólogas a péptidos
antimicrobianos en el genoma de Solanum lycopersicum, que presenten un
potencial efecto contra Ralstonia solanacearum. Por medio de bases de datos
de Péptidos antimicrobianos (AMP) se eligieron tres péptidos tipo Defensinas
encontrados en Spinacia oleracea (D1, D2, D5), luego se realizó un alineamiento
de la secuencia de estos con 256 genes de Solanum lycopersicum, de los cuales
tres presentaron homología con D1, se compararon los alineamientos para hallar
las posiciones que presentaran cambios de aminoácidos. Por medio de I-
TASSER se generó el modelo de la estructura 3D de D1 y se graficaron siete
zonas con variaciones; las funciones de las posiciones afectadas fueron
estudiadas, considerando las propiedades de los aminoácidos y se analizó la
12
secuencia de los péptidos homólogos en APD3, los resultados revelaron que los
péptidos corresponden a AMP tipo Defensinas, coincidiendo con D1, además,
los aminoácidos modificados compartieron características, por ende, se concluyó
que estas variaciones no afectarían la acción antimicrobiana de los péptidos
homólogos y presentarían un alto potencial para brindar una nueva estrategia de
control contra la marchitez bacteriana. | spa |
dc.description.abstract | This project proposes a control strategy on bacterial wilt in tomato crops
(Solanum lycopersicum), caused by Ralstonia solanacearum, and generates
large losses in crops. Plants have an elaborate immune system, however,
phytopathogens seek strategies to evade their defense mechanisms and achieve
invasion; causing farmers to make a high economic investment for their control.
The aim of this work is to search for regions homologous to antimicrobial peptides
in the genome of Solanum lycopersicum, which have a potential effect against
Ralstonia solanacearum. By means of AMP databases, three Defensin type
peptides found in Spinacia oleracea (D1, D2, D5) were chosen, followed by an
alignment of the sequence of these with 256 genes of S. lycopersicum, of which
three (ADK36631, CAB42006.1, NP_001297247.1) presented homology with D1,
the alignments were compared to find the positions presenting amino acid
changes. Using I-TASSER, the model of the 3D structure of D1 was generated
and seven zones with variations were plotted; the functions of the affected
positions were studied, considering the properties of the amino acids and the
sequence of the homologous peptides was analyzed in APD3, the results
revealed that the peptides correspond to Defensins type AMP, coinciding with
D1, in addition, the modified amino acids shared characteristics , therefore, it was
concluded that these variations would not affect the antimicrobial action of
ADK36631, CAB42006.1, NP_001297247.1 and would present a high potential
to provide a new control strategy against bacterial wilt. | eng |
dc.description.tableofcontents | Resumen 10
1. Introducción 13
2. Objetivos 15
3. Objetivo general 15
3.1.Objetivos específicos 15
4. Antecedentes 16
5. Marco referencial 18
5.1.Inmunología de las plantas 18
5.1.1. Receptores y respuesta inmunológica 20
5.2.Péptidos antimicrobianos 22
5.2.1. Tipos de Péptidos antimicrobianos 23
5.2.2. Rol de los péptidos antimicrobianos (AMP) en la respuesta inmunológica de las plantas 25
5.3. Marchitez bacteriana 26
5.3.1. Ralstonia solanacearum 27
5.3.2. Péptidos antimicrobianos como potencial control de la marchitez bacteriana 27
6. Diseño metodológico 29
7. Resultados 31
8. Discusión 40
9. Conclusiones 44
10.Referencias bibliográficas 45
11.Anexos 50 | spa |
dc.format.extent | 60p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2019 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Búsqueda de regiones homólogas a péptidos antimicrobianos en el genoma de Solanum lycopersicum con acción frente a Ralstonia solanacearum | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.identifier.barcode | 60097 | |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Meneguetti BT, Machado L dos S, Oshiro KGN, Nogueira ML, Carvalho CME, Franco OL. Antimicrobial peptides from fruits and their potential use as biotechnological Tools-A review and outlook. Front Microbiol. 2017;7(JAN):1–13. | spa |
dc.relation.references | DANE. Encuesta Nacional Agropecuaria -ENA ESTADÍSTICAS AGROPECUARIAS. 2016; Available from: http://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2016 /presentacion_ena_2016.pdf | spa |
dc.relation.references | CCB C de C de B. Manual Tomate. Programa Apoyo Agrícola Y Agroindustrial Vicepresidencia Fortalec Empres Cámara Comer Bogotá. 2015;1–56. | spa |
dc.relation.references | MINSA. Boletin informativo. J Phys Conf Ser. 2009;194:022014. | spa |
dc.relation.references | Eliana Mendoza Mendoza. Potencial biológico de cepas autóctonas de Streptomyces Spp. Como Antagonista frente a Ralstonia solanacearum. Vol. 91. 2017. | spa |
dc.relation.references | Bernal AJ. Problemas fitopatológicos en especies de la familia Solanaceae causados por los géneros Phytophthora , Alternaria y Ralstonia en Colombia . Una revisión Biotic contraints of the Solanaceae caused by Phytophthora ,. Agron Colomb. 2007;25(2):320–9. | spa |
dc.relation.references | González I, Arias Y. INTERACCIÓN PLANTA-BACTERIAS FITOPATÓGENAS : CASO DE ESTUDIO Ralstonia solanacearum - PLANTAS HOSPEDANTES PLANT-PHYTOPATHOGEN BACTERIA INTERACTION : CASE STUDY Ralstonia. 2009;24(2):69–80. | spa |
dc.relation.references | Miller RNG, Alves GSC, Van Sluys MA. Plant immunity: Unravelling the complexity of plant responses to biotic stresses. Ann Bot. 2017;119(5):681–7. | spa |
dc.relation.references | Castro E, García E. La inmunidad innata en las plantas : una batalla molecular entre receptores y estimuladores. Rev Biológicas. 2009;11(11):43–7. | spa |
dc.relation.references | Carolina A, Arias R, Bogotá DC. IDENTIFICACIÓN DE GENES TIPO PÉPTIDO ANTIMICROBIANO PROVENIENTES DE Solanum lycopersicum var . cerasiforme TESIS PRESENTADA POR : Como requisito parcial para optar por el titulo de Maestría en Ciencias – Bioquímica DIRECTOR : HUMBERTO MIGUEL ZAMORA ESPITI. 2010; | spa |
dc.relation.references | Maróti Gergely G, Kereszt A, Kondorosi É, Mergaert P. Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol. 2011;162(4):363–74. | spa |
dc.relation.references | Holaskova E, Galuszka P, Frebort I, Oz MT. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv [Internet]. 2014;33(6):1005–23. Available from: http://dx.doi.org/10.1016/j.biotechadv.2015.03.007 | spa |
dc.relation.references | Lipsky A, Joshi JR, Carmi N, Yedidia I. Expression levels of antimicrobial 48 peptide tachyplesin I in transgenic Ornithogalum lines affect the resistance to Pectobacterium infection. J Biotechnol [Internet]. 2016;238:22–9. Available from: http://dx.doi.org/10.1016/j.jbiotec.2016.09.008 | spa |
dc.relation.references | Silva MS, Arraes FBM, Campos M de A, Grossi-de-Sa M, Fernandez D, Cândido E de S, et al. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Sci [Internet]. 2018;270(February):72–84. Available from: https://doi.org/10.1016/j.plantsci.2018.02.013 | spa |
dc.relation.references | George N Arios. Fitopatología. Vol. 25. 2010. 30-41 p. | spa |
dc.relation.references | PL A N T I M M U N OLOGY An infant giant. Nature. 2012;1:3–4. | spa |
dc.relation.references | Benavides Mendoza A, Robledo Olivo A, García Enciso EL, Solís Gaona S, González Morales S. Efecto de elicitores de origen natural sobre plantas de tomate sometidas a estrés biótico. Rev Mex Ciencias Agrícolas. 2018;(20):4211–21. | spa |
dc.relation.references | Cheng C, Gao X, Feng B, Sheen J, Shan L, He P. Plant immune response to pathogens differs with changing temperatures. Nat Commun [Internet]. 2013;4(May):1–9. Available from: http://dx.doi.org/10.1038/ncomms3530 | spa |
dc.relation.references | Couto D, Zipfel C. Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol. 2016;16(9):537–52. | spa |
dc.relation.references | Pacheco JM. Proteínas R Y Percepción De Efectores R-Proteins and Perception of Pathogenic Effectors in. 2017;32(1):1–9. Available from: http://scielo.sld.cu/pdf/rpv/v32n1/rpv01117.pdf | spa |
dc.relation.references | Gasca-tuz C, Chel-guerrero L, Betancur-ancona D. Capacidad antibacteriana de fracciones peptídicas de frijol lima ( Phaseolus lunatus L .) obtenidas por hidrólisis enzimática . obtained by enzymatic hydrolysis . Aportación a la literatura científica : Introducción : Métodos : 2017;2(1):8–16. | spa |
dc.relation.references | Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry. 2018;154(May):94–105. | spa |
dc.relation.references | Goyal RK, Mattoo AK. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Sci [Internet]. 2014;228:135–49. Available from: http://dx.doi.org/10.1016/j.plantsci.2014.05.012 | spa |
dc.relation.references | Stotz HU, Thomson JG, Wang Y. Plant defensins: defense, development and application. Plant Signal Behav. 2009;4(11):1010–2. | spa |
dc.relation.references | Goyal RK, Mattoo AK. Plant antimicrobial peptides. Host Def Pept Their Potential as Ther Agents. 2016;111–36. | spa |
dc.relation.references | Games PD, daSilva EQG, Barbosa M de O, Almeida-Souza HO, Fontes PP, deMagalhães-Jr MJ, et al. Computer aided identification of a Hevein- like antimicrobial peptide of bell pepper leaves for biotechnological use. 49 BMC Genomics [Internet]. 2016;17(Suppl 12):1–13. Available from: http://dx.doi.org/10.1186/s12864-016-3332-8 | spa |
dc.relation.references | Lacerda AF, Vasconcelos ÉAR, Pelegrini PB, Grossi de Sa MF. Antifungal defensins and their role in plant defense. Front Microbiol. 2014;5(APR):1–10. | spa |
dc.relation.references | Segura A, Moreno M, García-Olmedo F. Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett. 1993;332(3):243–6. | spa |
dc.relation.references | Carvalho A de O, Gomes VM. Role of plant lipid transfer proteins in plant cell physiology-A concise review. Peptides. 2007;28(5):1144–53. | spa |
dc.relation.references | Kovalskaya N, Hammond RW. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expr Purif [Internet]. 2009;63(1):12–7. Available from: http://dx.doi.org/10.1016/j.pep.2008.08.013 | spa |
dc.relation.references | Segura A, Moreno M, Madueño F, Molina A, García-Olmedo F. Snakin-1, a Peptide from Potato That Is Active Against Plant Pathogens. Mol Plant- Microbe Interact. 2007;12(1):16–23. | spa |
dc.relation.references | Escarleth I, Puentes C, Caballero IAD. Ciclótidos , proteínas circulares producidas por plantas con potencial farmacológico Cyclotides , circular proteins produced by plants with pharmacological potential. 2015;49(2):384–93. | spa |
dc.relation.references | Cools TL, Struyfs C, Cammue BP, Thevissen K. Antifungal plant defensins: Increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol. 2017;12(5):441–54. | spa |
dc.relation.references | Campos ML, Lião LM, Alves ESF, Migliolo L, Dias SC, Franco OL. A structural perspective of plant antimicrobial peptides. Biochem J [Internet]. 2018;475(21):3359–75. Available from: http://biochemj.org/lookup/doi/10.1042/BCJ20180213 | spa |
dc.relation.references | Champoiseau PG, Jones JB, Allen C. Ralstonia solanacearum Race 3 Biovar 2 Causes Tropical Losses and Temperate Anxieties. Plant Heal Prog [Internet]. 2009;2(January). Available from: http://www.plantmanagementnetwork.org/php/elements/sum.aspx?id=778 5&photo=4419 | spa |
dc.relation.references | Flores-Cruz Z, Allen C. Ralstonia solanacearum Encounters an Oxidative Environment During Tomato Infection. Mpmi [Internet]. 2009;22(7):773– 782. Available from: http://apsjournals.apsnet.org/doi/pdf/10.1094/MPMI- 22-7-0773 | spa |
dc.relation.references | Naranjo Feliciano E, Martínez Zubiaur Y. Avances en el diagnóstico de la marchitez bacteriana (Ralstonia solanacearum): situación actual y perspectivas en Cuba. Rev Protección Veg [Internet]. 2013;28(3):160–70. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010- 27522013000300001&lang=es | spa |
dc.relation.references | Valle T. Identificación y caracterización preliminar del agente causal de la mancha necrótica de las hojas agente causal de la mancha necrótica de las hojas. Cienc y Tecnol Agropecu. 2007;8(January 2008):22–5. | spa |
dc.relation.references | Meng F. Ralstonia Solanacearum Species Complex and Bacterial Wilt Disease. J Bacteriol Parasitol [Internet]. 2013;04(02):2–5. Available from: https://www.omicsonline.org/ralstonia-solanacearum-species-complex- and-bacterial-wilt-disease-2155-9597.1000e119.php?aid=12400 | spa |
dc.relation.references | Segura A, Moreno M, Molina A, García-Olmedo F. Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett. 1998;435(2– 3):159–62. | spa |
dc.relation.references | Lahaye T. Illuminating the molecular basis of gene-for-gene resistance; Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearum popP2. Trends Plant Sci. 2004;9(1):1–4. | spa |
dc.relation.references | Liu G, Yang F, Li F, Li Z, Lang Y, Shen B, et al. Therapeutic potential of a scorpion venom-derived antimicrobial peptide and its homologs against antibiotic-resistant Gram-positive bacteria. Front Microbiol. 2018;9(MAY):1–14. | spa |
dc.relation.references | Cavanagh JP, Granslo HN, Fredheim EA, Christophersen L, Jensen PØ, Thomsen K, et al. Efficacy of a synthetic antimicrobial peptidomimetic versus vancomycin in a staphylococcus epidermidis device-related murine peritonitis model. J Antimicrob Chemother. 2013;68(9):2106–10. | spa |
dc.relation.references | Gao B, Xu J, del Carmen Rodriguez M, Lanz-Mendoza H, Hernández- Rivas R, Du W, et al. Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie. 2010;92(4):350– 9. | spa |
dc.relation.references | Gracy J, Le-Nguyen D, Gelly JC, Kaas Q, Heitz A, Chiche L. KNOTTIN: The knottin or inhibitor cystine knot scaffold in 2007. Nucleic Acids Res. 2008;36(SUPPL. 1):314–9. | spa |
dc.relation.references | Bruix M, Jiménez MA, Santoro J, González C, Colilla FJ, Méndez E, et al. Solution Structure of γ1-H and γ1-P Thionins from Barley and Wheat Endosperm Determined by 1H-NMR: A Structural Motif Common to Toxic Arthropod Proteins. Biochemistry. 1993;32(2):715–24. | spa |
dc.relation.references | Antimicrobianos S, Nacional I, Malbran DEIC, Aires B, De L, Molecular M, et al. Diseño y Evaluación de Nuevos Péptidos Antibacterianos : Actividad Comparativa Frente a Omiganan ® Pentahydrochloride. (2):27853. | spa |
dc.relation.references | Khamis AM, Essack M, Gao X, Bajic VB. Distinct profiling of antimicrobial peptide families. Bioinformatics. 2015;31(6):849–56. | spa |
dc.relation.references | Odintsova TI, Slezina MP, Istomina EA, Korostyleva T V., Kasianov AS, Kovtun AS, et al. Defensin-like peptides in wheat analyzed by whole- transcriptome sequencing: a focus on structural diversity and role in induced resistance. PeerJ [Internet]. 2019;7:e6125. Available from: https://peerj.com/articles/6125 | spa |
dc.relation.references | Sathoff AE, Samac D. Antibacterial Activity of Plant Defensins. Mol Plant- 51 Microbe Interact. 2018;1–35. | spa |
dc.relation.references | Dayeong Kim, Nagasundarapandian Soundrarajan a JL, Cho H, Choi M, Cha S-Y, Byeongyong Ahn a HJ, Le MT, et al. crossm Genomewide Analysis of the Antimicrobial Peptides in Python Cathelicidins with Potent Antimicrobial. Am Soc Microbiol. 2017;61(9):1–12. | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.lemb | marchitez bacteriana | |
dc.subject.lemb | homología | |
dc.subject.lemb | bioinformática | |
dc.subject.proposal | péptidos antimicrobianos | spa |
dc.subject.proposal | defensinas | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |