dc.contributor.advisor | Rodríguez Lancheros, Deisy Carolina | |
dc.contributor.advisor | Rodríguez Lancheros, Deisy Carolina | |
dc.contributor.advisor | Hernández Rojas, Edith Del Carmen | |
dc.contributor.author | Tonguino Quiñonez, Erika Tatiana | |
dc.date.accessioned | 2022-03-10T14:13:23Z | |
dc.date.available | 2022-03-10T14:13:23Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | https://repositorio.universidadmayor.edu.co/handle/unicolmayor/4801 | |
dc.description.abstract | Teniendo en cuenta que la tuberculosis es una enfermedad infecciosa causada
principalmente por el bacilo Mycobacterium tuberculosis, el cual infecta con mayor
frecuencia los pulmones debido a que es transmitida por aerosoles (Tuberculosis
pulmonar), además de afectar otros órganos (Tuberculosis extrapulmonar), y
considerada después del SIDA como la segunda causa de muerte a nivel mundial,
la Fundación Instituto de Inmunología de Colombia ha desarrollado una metodología
lógica y racional para el diseño de vacunas sintéticas, la cual ha tenido éxito en
estudios con malaria. Los avances obtenidos en el desarrollo de vacuna antituberculosa han permitido establecer péptidos de alta unión específica a células
blanco (HABPs), que además inhiben la entrada de la micobacteria en ensayos in
vitro, los cuales han sido postulados para estudios como posibles candidatos a
vacuna.
Dando continuidad a dicha metodología, en este proyecto mediante ensayos de
linfoproliferación se evaluó parte de la respuesta inmune celular generada por
péptidos sintéticos derivados de proteínas de Mycobacterium tuberculosis H37Rv
ante PBMC de 8 individuos clasificados por prueba de QuantiFERON Qf (4Qf+ y
4Qf-), determinando que la mayoría de los péptidos sintéticos importantes en la
interacción hospedero-patógeno no son inmunogénicos.
Se estableció que los péptidos que hacen parte de las proteínas Rv0180c (31039),
Rv2270 (37777) y Rv3494c (38373) estimulan la linfoproliferación de linfocitos de
por lo menos 3 de los 4 individuos clasificados como Qf+, y a su vez que los
resultados obtenidos contribuyen a una posible técnica de diagnóstico para
diferenciar pacientes que hayan tenido contacto con M. tuberculosis de pacientes
que no | spa |
dc.description.tableofcontents | RESUMEN 10
INTRODUCCIÓN 12
1. MARCO REFERENCIAL 15
1.1 Epidemiologia de la tuberculosis 15
1.2 Generalidades de la tuberculosis 16
1.2.1 El género Mycobacterium 16
1.2.2 Mycobacterium tuberculosis 18
1.2.3 Respuesta inmune ante M. tuberculosis 22
1.2.4 Diagnóstico de la enfermedad 25
1.2.4.1 Criterio clínico 25
1.2.4.2 Criterio bacteriológico 26
• Baciloscopia 26
• Cultivo bacteriano 27
1.2.4.3 Criterio radiológico 28
1.2.4.4 Criterio epidemiológico 29
1.2.4.5 Criterio tuberculínico 29
1.2.4.6 Criterio histopatológico 30
1.2.4.7 Ensayos de liberación de interferón gamma 30
1.2.5 Fármacos antituberculosos 31
1.2.6. Desarrollo de vacunas contra la tuberculosis 32
2. OBJETIVOS 36
2.1 General 36
2.2. Específicos 36
3. DISEÑO METODOLOGICO 37
3.1 Universo, Población, Muestra 37
3.2. Selección de péptidos 37
3.3 Obtención de muestras de sangre periférica 38
3.4 Separación de células mononucleares de sangre periférica (PBMC )38
3.5 Ensayos de Linfoproliferación 40
3.5.1 Ensayos preliminares utilizando MTT 40
3.5.2 Ensayos utilizando CFSE 42
3.5.3 Procesamiento y análisis de datos 44
4. RESULTADOS 45
4.1 Selección de péptidos 45
4.2 Obtención de PBMC 47
4.3 Ensayos de Linfoproliferación 47
4.3.1 Ensayos preliminares utilizando MTT 47
4.3.2 Ensayos utilizando CFSE 49
5. DISCUSIÓN 53
6. CONCLUSIONES 57
7. RECOMENDACIONES 58
8. BIBLIOGRAFIA 59 | spa |
dc.format.extent | 68p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2018 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Determinación de respuesta inmune celular generada por péptidos sintéticos derivados de proteínas de Mycobacterium Tuberculosis H37rv | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.identifier.barcode | 58423 | |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá D.C | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Kovacs-Simon A, Titball R, Michell SL. Lipoproteins of bacterial pathogens. Infection
and immunity. 2011;79(2):548-61. | spa |
dc.relation.references | WHO. Global Tuberculosis Report. Report. World Health Organization, 2017. | spa |
dc.relation.references | Enfermedades CpeCylPdl. Factores de Riesgo de la Tuberculosis. 01-02-2018;
Available from: https://www.cdc.gov/tb/esp/topic/basics/risk.htm. | spa |
dc.relation.references | Fine PE. Variation in protection by BCG: implications of and for heterologous
immunity. The Lancet. 1995;346(8986):1339-45. | spa |
dc.relation.references | Evans TG, Brennan MJ, Barker L, Thole J. Preventive vaccines for tuberculosis.
Vaccine. 2013;31:B223-B6. | spa |
dc.relation.references | Lozano JM, Patarroyo ME. A rational strategy for a malarial vaccine development.
Microbes and infection. 2007;9(6):751-60. | spa |
dc.relation.references | Patarroyo ME, Patarroyo MA. Emerging rules for subunit-based, multiantigenic,
multistage chemically synthesized vaccines. Accounts of chemical research.
2008;41(3):377-86. | spa |
dc.relation.references | atarroyo M, Cifuentes G, Bermudez A, Patarroyo M. Strategies for developing multi‐
epitope, subunit‐based, chemically synthesized anti‐malarial vaccines. Journal of cellular
and molecular medicine. 2008;12(5b):1915-35. | spa |
dc.relation.references | Patarroyo ME, Cifuentes G, Martínez NL, Patarroyo MA. Atomic fidelity of subunitbased chemically-synthesized antimalarial vaccine components. Progress in biophysics and
molecular biology. 2010;102(1):38-44. | spa |
dc.relation.references | Cifuentes G, Bermudez A, Rodriguez R, Patarroyo M, Patarroyo M. Shifting the
polarity of some critical residues in malarial peptides' binding to host cells is a key factor in
breaking conserved antigens' code of silence. Medicinal Chemistry. 2008;4(3):278-9 | spa |
dc.relation.references | Ocampo M, Patarroyo MA, Vanegas M, Alba MP, Patarroyo ME. Functional,
biochemical and 3D studies of Mycobacterium tuberculosis protein peptides for an effective
anti-tuberculosis vaccine. Critical reviews in microbiology. 2014;40(2):117-45. | spa |
dc.relation.references | Dorronsoro I, Torroba L, editors. Microbiología de la tuberculosis. Anales del sistema
sanitario de Navarra; 2007: SciELO Espana. | spa |
dc.relation.references | ario de Navarra; 2007: SciELO Espana.
13. Chan VL. Bacterial genomes and infectious diseases. Pediatric research.
2003;54(1):1-7. | spa |
dc.relation.references | García JG, Gutiérrez JP, Antuña AS. Respiratory infections caused by environmental
mycobacteria. 2005 [cited 41 4]; 206-19]. Available from:
http://www.aeras.org/annualreport2016. | spa |
dc.relation.references | L. B. The Basic of Clinical Bacteriology. In: Palomino JC CLS, Ritacco V Editors,
editor. 2007;Tuberculosis 2007: From basic science to patient care 2007. | spa |
dc.relation.references | Kaur D, Guerin ME, Škovierová H, Brennan PJ, Jackson M. Biogenesis of the cell
wall and other glycoconjugates of Mycobacterium tuberculosis. Advances in applied
microbiology. 2009;69:23-78 | spa |
dc.relation.references | Gonzalo-A.Jesus MD, Martin Carlos and Aguilo Nacho. MTBVAC: Attenuating the
Human Pathogen of Tuberculosis (TB) Toward a Promising Vaccine against the TB
Epidemic. 2017. | spa |
dc.relation.references | Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium
tuberculosis. Tuberculosis. 2003;83(1):91-7. | spa |
dc.relation.references | Trabajo INdSeHee. Mycobacterium tuberculosis: viabilidad, propagación y
transmisión Instituto Nacional de Seguridad e Higiene en el Trabajo, 23 de Septiembre de
2012 | spa |
dc.relation.references | Kaufmann SH. How can immunology contribute to the control of tuberculosis? Nature
reviews Immunology. 2001;1(1):20. | spa |
dc.relation.references | Cosma CL, Sherman DR, Ramakrishnan L. The secret lives of the pathogenic
mycobacteria. Annual Reviews in Microbiology. 2003;57(1):641-76. | spa |
dc.relation.references | Garcıá -Pérez BE, Mondragón-Flores R, Luna-Herrera J. Internalization of
Mycobacterium tuberculosis by macropinocytosis in non-phagocytic cells. Microbial
pathogenesis. 2003;35(2):49-55 | spa |
dc.relation.references | Russell DG. Who puts the tubercle in tuberculosis? Nature Reviews Microbiology.
2007;5(1):39. | spa |
dc.relation.references | Kaufmann SH, Hussey G, Lambert P-H. New vaccines for tuberculosis. The Lancet.
2010;375(9731):2110-9 | spa |
dc.relation.references | Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K, et al. Apoptosis
facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis.
Nature medicine. 2003;9(8):1039 | spa |
dc.relation.references | Figueroa MCEG-S. Respuesta Inmune a la infección por Mycobacterium
tuberculosis. Una revisión de la literatura. Rev Inst Nal Enf Resp Mex. 2001;14(2):114-28. | spa |
dc.relation.references | Goicochea CR, Castillo SB, Tarazona PC, Narvaez CC, Última JC, Última RC, et al.
Asociación de criterios de Stegen modificado por Toledo para el diagnóstico de tuberculosis
pediátrica, Hospital Belén de Trujillo. UCV-SCIENTIA. 2015;4(1):64-71. | spa |
dc.relation.references | Tincopa Wong OW, Castro L, Lelie K, Plasencia Angulo WF, Valverde López JC.
Tuberculosis cutánea: Rasgos clínicos, histopatológicos y epidemiológicos en un Hospital
General de Trujillo, Perú. Dermatol peru. 2006;16(3):220-32. | spa |
dc.relation.references | Abbate E, Vescovo M, Natiello M, Cufré M, García A, Ambroggi M, et al. Tuberculosis
extensamente resistente (XDR-TB) en Argentina: aspectos destacables epidemiológicos,
bacteriológicos, terapéuticos y evolutivo. 2007 | spa |
dc.relation.references | Cavanaugh JS, Shah NS, Cain KP, Winston CA. Survival among Patients with HIV
Infection and Smear-Negative Pulmonary Tuberculosis-United States, 1993–2006. PLoS
One. 2012;7(10):e47855 | spa |
dc.relation.references | Arteaga Arteaga A, Vélez Moncada E, Salazar Blanco OF, Morales Múnera OL,
Cornejo Ochoa JW, Valencia Pino DC. Clinical and sociodemographic characteristics of
children, younger than 13 years, with or without a confirmed diagnosis of pulmonary
tuberculosis, at Hospital Universitario San Vicente de Paúl, Medellín, Colombia, 2007-2008.
Iatreia. 2010;23(3):227-39. | spa |
dc.relation.references | Abbate EH, Palmero DJ, Castagnino J, Cufre M, Doval A, Estevan R, et al.
Tratamiento de la tuberculosis: Guía práctica elaborada por la Sección Tuberculosis,
Asociación Argentina de Medicina Respiratoria. Medicina (Buenos Aires). 2007;67(3):295-
305 | spa |
dc.relation.references | Garzón MC, Angée DY, Llerena C, Orjuela DL, Victoria JE. Vigilancia de la
resistencia del Mycobacterium tuberculosis a los fármacos antituberculosos, Colombia
2004-2005. Biomédica. 2008;28(3):319-26 | spa |
dc.relation.references | Arias Guillén M, Palomar R, Arias M. Avances en el diagnóstico de la infección
tuberculosa latente en pacientes en tratamiento renal sustitutivo. Nefrología (Madrid).
2011;31(2):137-41. | spa |
dc.relation.references | Cardoso EM. Multiple drug resistance: a threat for tuberculosis control. Revista
Panamericana de Salud Pública. 2004;16(1):68-73. | spa |
dc.relation.references | Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nature reviews
Immunology. 2012;12(5):352. | spa |
dc.relation.references | Moliva JI, Turner J, Torrelles JB. Prospects in Mycobacterium bovis Bacille Calmette
et Guerin (BCG) vaccine diversity and delivery: why does BCG fail to protect against
tuberculosis? Vaccine. 2015;33(39):5035-41 | spa |
dc.relation.references | AERAS. GLOBAL CLINICAL PIPELINE OF TB VACCINE
CANDIDATES.Information is self-reported by vaccine sponsors. 26/2017. Available from:
http://www.aeras.org/annualreport2016. | spa |
dc.relation.references | Agger EM, Cassidy JP, Brady J, Korsholm KS, Vingsbo‐Lundberg C, Andersen P.
Adjuvant modulation of the cytokine balance in Mycobacterium tuberculosis subunit
vaccines; immunity, pathology and protection. Immunology. 2008;124(2):175-85. | spa |
dc.relation.references | Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends.
Immunology and cell biology. 2004;82(5):488. | spa |
dc.relation.references | Cole S, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Erratum:
Deciphering the biology of Mycobacterium tuberculosis from the complete genome
sequence. Nature. 1998;396(6707):190 | spa |
dc.relation.references | Song H, Sandie R, Wang Y, Andrade-Navarro MA, Niederweis M. Identification of
outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis. 2008;88(6):526-44. | spa |
dc.relation.references | Vizcaíno C, Restrepo-Montoya D, Rodríguez D, Niño LF, Ocampo M, Vanegas M, et
al. Computational prediction and experimental assessment of secreted/surface proteins
from Mycobacterium tuberculosis H37Rv. PLoS computational biology.
2010;6(6):e1000824 | spa |
dc.relation.references | Patarroyo MA, Curtidor H, Plaza DF, Ocampo M, Reyes C, Saboya O, et al. Peptides
derived from the Mycobacterium tuberculosis Rv1490 surface protein implicated in inhibition
of epithelial cell entry: Potential vaccine candidates? Vaccine. 2008;26(34):4387-95. | spa |
dc.relation.references | Ocampo M, Aristizábal-Ramírez D, Rodríguez DM, Muñoz M, Curtidor H, Vanegas
M, et al. The role of Mycobacterium tuberculosis Rv3166c protein-derived high-activity
binding peptides in inhibiting invasion of human cell lines. Protein Engineering, Design &
Selection. 2012;25(5):235-42. | spa |
dc.relation.references | Forero M, Puentes A, Cortés J, Castillo F, Vera R, Rodríguez LE, et al. Identifying
putative Mycobacterium tuberculosis Rv2004c protein sequences that bind specifically to
U937 macrophages and A549 epithelial cells. Protein science. 2005;14(11):2767-80. | spa |
dc.relation.references | Rodríguez DC, Ocampo M, Reyes C, Arévalo‐Pinzón G, Munoz M, Patarroyo MA, et
al. Cell‐Peptide Specific Interaction Can Inhibit Mycobacterium tuberculosis H37Rv
Infection. Journal of cellular biochemistry. 2016;117(4):946-58. | spa |
dc.relation.references | Ocampo M, Curtidor H, Vanegas M, Patarroyo MA, Patarroyo ME. Specific
Interaction between Mycobacterium tuberculosis Lipoprotein‐derived Peptides and Target
Cells Inhibits Mycobacterial Entry In Vitro. Chemical biology & drug design. 2014;84(6):626- | spa |
dc.relation.references | Plaza DF, Curtidor H, Patarroyo MA, Chapeton‐Montes JA, Reyes C, Barreto J, et
al. The Mycobacterium tuberculosis membrane protein Rv2560− biochemical and functional
studies. The FEBS journal. 2007;274(24):6352-64. | spa |
dc.relation.references | The FEBS journal. 2007;274(24):6352-64.
50. Rodríguez DC, Ocampo M, Varela Y, Curtidor H, Patarroyo MA, Patarroyo ME.
Mce4F Mycobacterium tuberculosis protein peptides can inhibit invasion of human cell lines.
Pathogens and disease. 2015;73(3) | spa |
dc.relation.references | Rodríguez DM, Ocampo M, Curtidor H, Vanegas M, Patarroyo ME, Patarroyo MA.
Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides
which inhibit cell invasion. Peptides. 2012;38(2):208-16 | spa |
dc.relation.references | Rodríguez D, Vizcaíno C, Ocampo M, Curtidor H, Pinto M, Elkin Patarroyo M, et al.
Peptides from the Mycobacterium tuberculosis Rv1980c protein involved in human cell
infection: insights into new synthetic subunit vaccine candidates. Biological chemistry.
2010;391(2/3):207-17 | spa |
dc.relation.references | Profile BSD, Workstation BO, Controller BB, Controller BAS, Sensor BS. Product
description. Migration. 2011;3:4. | spa |
dc.relation.references | Bøyum A. Separation of white blood cells. Nature. 1964;204(4960):793-4. | spa |
dc.relation.references | Profile BSD, Workstation BO, Controller BB, Controller BAS, Sensor BS. Product
description. Migration2011. p. 4. | spa |
dc.relation.references | Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival:
modifications to the tetrazolium dye procedure giving improved sensitivity and reliability.
Journal of immunological methods. 1986;89(2):271-7. | spa |
dc.relation.references | Parish CR, Glidden MH, Quah BJ, Warren HS. Use of the intracellular fluorescent
dye CFSE to monitor lymphocyte migration and proliferation. Current protocols in
immunology. 2009:4.9. 1-4.9. 13. | spa |
dc.relation.references | Quah BJ, Warren HS, Parish CR. Monitoring lymphocyte proliferation in vitro and in
vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester.
Nature protocols. 2007;2(9):2049. | spa |
dc.relation.references | Martinez P, Lopez C, Saravia C, Vanegas M, Patarroyo MA. Evaluation of the
antigenicity of universal epitopes from PvDBPII in individuals exposed to Plasmodium vivax
malaria. Microbes and infection. 2010;12(14-15):1188-97. | spa |
dc.relation.references | Arenas-Ramirez N, Woytschak J, Boyman O. Interleukin-2: biology, design and
application. Trends in immunology. 2015;36(12):763-77 | spa |
dc.relation.references | Revelen R, D Arbonneau F, Guillevin L, Bordron A, Youinou P, Dueymes M.
Comparison of cell-ELISA, flow cytometry and Western blotting for the detection of
antiendothelial cell antibodies. Clinical and experimental rheumatology. 2002;20(1):19-26. | spa |
dc.relation.references | Nguyen XD, Eichler H, Dugrillon A, Piechaczek C, Braun M, Klüter H. Flow cytometric
analysis of T cell proliferation in a mixed lymphocyte reaction with dendritic cells. Journal of
immunological methods. 2003;275(1-2):57-68. | spa |
dc.relation.references | Behr MA. Comparative genomics of mycobacteria: some answers, yet more new
questions. Cold Spring Harbor perspectives in medicine. 2015;5(2):a021204. | spa |
dc.relation.references | Cáceres SM, Ocampo M, Arévalo-Pinzón G, Jimenez RA, Patarroyo ME, Patarroyo
MA. The Mycobacterium tuberculosis membrane protein Rv0180c: evaluation of peptide
sequences implicated in mycobacterial invasion of two human cell lines. Peptides.
2011;32(1):1-10. | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.proposal | Tuberculosis | spa |
dc.subject.proposal | Mycobacterium tuberculosis H37Rv | spa |
dc.subject.proposal | Péptidos sintéticos | spa |
dc.subject.proposal | HABPs | spa |
dc.subject.proposal | PBMC | spa |
dc.subject.proposal | Infoproliferación | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |