dc.contributor.advisor | Navarrete Ospina, Jeannette | |
dc.contributor.advisor | Carabalí Isajar, Mary Lilián | |
dc.contributor.author | Galeano Orjuela, Daniela Alejandra | |
dc.contributor.author | Gómez Camargo, Juan Sebastián | |
dc.date.accessioned | 2022-10-10T20:09:30Z | |
dc.date.available | 2022-10-10T20:09:30Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://repositorio.universidadmayor.edu.co/handle/unicolmayor/5685 | |
dc.description.abstract | Actualmente la tuberculosis es un problema de salud pública. La forma más efectiva
para contrarrestar es la vacunación; no obstante, se cuenta con la BCG, una vacuna
que no otorga protección a toda la población, ya que solo protege a infantes de las
presentaciones severas de la enfermedad. Durante años se ha evaluado el papel de
la respuesta inmune humoral y celular frente a Mycobacterium tuberculosis (Mtb)
para controlar el desarrollo de la enfermedad. Se conoce que los anticuerpos
presentan funciones efectoras que median la respuesta inmune en diferentes
patologías; sin embargo, para la tuberculosis no está bien descrita. En este proyecto
se planteó el análisis de las funciones efectoras de los anticuerpos sobre
macrófagos y neutrófilos infectados con Mtb H37Rv, a través del aislamiento de
anticuerpos péptido específicos que reconocían péptidos derivados de la envoltura
de la micobacteria; para esto se aislaron 34 anticuerpos péptido-específicos los
cuales en su mayoría demostraron su función efectora neutralizante al inhibir la
entrada de la micobacteria a macrófagos y además su capacidad para reducir la
necrosis y aumentar la apoptosis en neutrófilos. Se encontró que los péptidos
40400, 31025 y 9111 son reconocidos por anticuerpos cuya función efectora en
macrófagos neutraliza a la micobacteria inhibiendo su entrada y en neutrófilos
reduce la muerte celular por necrosis favoreciendo un proceso apoptótico lo cual
establece un mejor panorama en el control y resolución de la patología,
estableciendo dichos péptidos como candidatos de un posible modelo vacunal
sintético que supere la protección conferida por la BCG. | spa |
dc.description.tableofcontents | 1. Resumen 11
2. Introducción …12
3. Objetivos … 15
3.1 Objetivo general
3.2 Objetivos específicos
4. Antecedentes ………… 16
5. Marco teórico ………… 19
5.1 Generalidades Tuberculosis
5.2 Mycobacterium tuberculosis y el complejo MTB
5.3 Epidemiología de la TB
5.4 Diagnóstico de la TB
5.5 Respuesta inmune innata de la TB
5.8 Respuesta inmune adaptativa de la TB
5.9 Vacunas contra la TB
6. Metodología …31
6.1 Diseño metodológico
6.1.1 Tipo de investigación
6.1.2 Alcance, nivel y enfoque de investigación
6.1.3 Población objeto de estudio
6.1.4 Muestra
6.2 Técnicas y procedimientos
6.2.1 Macrófagos
6.2.1.1 Cultivo de macrófagos U937
6.2.1.2 Ensayo de inhibición en macrófagos infectados con Mtb H37Rv,
mediado por péptidos
6.2.2 Predicción de epítopes B
6.2.2.1 Aproximación bioinformatica
6.2.3 Aislamiento de inmunoglobulinas IgG afines peptidicos seleccionados
6.2.3.1 Aislamiento y purificación de IgG
6.2.3.2 Purificación de IgG péptido-especifica
6.2.3.2.1 Aproximación experimental ELISAs
6.2.3.2.2 Aproximación experimental Dot Blot
6.2.4 Evaluación de la función efectora de inmunoglobulinas que reconocen
péptidos derivados de la envoltura de Mtb H37Rv
6.2.4.1 Macrófagos
6.2.4.1.1 Ensayo de inhibición en macrófagos infectados con Mtb H37Rv,
mediado por IgG
6.2.4.2 Neutrófilos
6.2.4.2.1 Aislamiento de neutrófilos en sangre periférica
6.2.4.2.2 Ensayo de invasión en neutrófilos infectados con Mtb H37Rv,
mediado por IgG
7. Resultados . 38
6
7.1 Inhibición de la entrada de Mtb H37Rv por péptidos modificados a
macrófagos U937
7.2 Selección de péptidos sintetizados a partir de proteínas presentes en la
envoltura de Mtb H37Rv
7.3 Evaluación del reconocimiento de péptidos nativos y modificados a partir
de inmunoglobulinas presentes en suero humano
7.4 Aislamiento de inmunoglobulinas IgG afines peptídicos seleccionados
7.5 Inhibición de la entrada de Mtb H37Rv por anticuerpos dirigidos a
péptidos nativos y modificados a macrófagos U937
7.6 Muerte celular en Neutrófilos infectados con Mtb H37Rv, mediada por IgG
8. Discusión … 48
9. Conclusiones ……… 55
10. Recomendaciones . 57
11. Referencias …58
12. Anexos …… 61 | spa |
dc.format.extent | 68p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022 | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Anticuerpos dirigidos contra péptidos de mycobacterium Tuberculosis y su función efectora en macrófagos y neutrófilos Infectados | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogota | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Arévalo M. Informe Tuberculosis Primer Semestre Año 2020. Secretaría de Salud [Internet].
2020 [citado 21 abril 2021]; 1 - 12 | spa |
dc.relation.references | MinSalud. Informe de Evento Tuberculosis. 2021. | spa |
dc.relation.references | WHO. Recommendations to assure the quality, safety and efficacy of BCG vaccines. WHO
[Internet]. 2013 [cited 21 April 2021]. 979; 1- 50 | spa |
dc.relation.references | Rivas-Santiago B, Vieyra-Reyes P, Araujo Z. Respuesta de inmunidad celular en la
tuberculosis pulmonar: Revisión. Invest. clín [Internet]. 2005 [citado 21 Abril 2021] ; 46( 4 ): 391-412 | spa |
dc.relation.references | Araujo Z, Acosta M, Escobar H, Baños R, Fernández de Larrea C, Rivas-Santiago B.
Respuesta inmunitaria en tuberculosis y el papel de los antígenos de secreción de Mycobacterium
tuberculosis en la protección, patología y diagnóstico. Revisión. Invest clín [Internet]. 2008 [citado 21
Abril 2021]; 49 (3): 411-441 | spa |
dc.relation.references | García-Sancho C. Respuesta inmune a la infección por Mycobacterium tuberculosis. Una
revisión de la literatura. Rev Inst Nal Enf Resp Mex [Internet]. 2001 [citado 21 Abril 2021]; 14 (2):
114-128 | spa |
dc.relation.references | Liu C, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion.
Cellular & Molecular Immunology [Internet]. 2017 [cited 21 April 2021]; 14 (12): 963-975. | spa |
dc.relation.references | Lyadova I. Neutrophils in Tuberculosis: Heterogeneity Shapes the Way?. Mediators of
Inflammation [Internet]. 2017 [cited 21 April 2021]; 2017: 1-11 | spa |
dc.relation.references | Yam J, García L, Sánchez L. Trampas extracelulares de neutrófilos (NET), consecuencia de un
suicidio celular. Gaceta Med de Mex [Internet]. 2012 [citado 21 Abril 2021]; 148 (1): 68-75 | spa |
dc.relation.references | Geering B, Simon H. Peculiarities of cell death mechanisms in neutrophils. Cell Death &
Differentiation [Internet]. 2011 [cited 21 April 2021];18(9):1457-1469. | spa |
dc.relation.references | ) Rijnink W, Ottenhoff T, Joosten S. B-Cells and Antibodies as Contributors to Effector Immune
Responses in Tuberculosis. Frontiers in Immunology [Internet]. 2021 [cited 21 April 2021];12 | spa |
dc.relation.references | Garcia J, Puentes A, Rodriguez L, et al. Mycobacterium tuberculosis Rv2536 protein implicated
in specific binding to human cell lines. Protein Sci. 2005; 14: 2236-45 | spa |
dc.relation.references | Forero M, Puentes A, Cortes J, et al. Identifying putative Mycobacterium tuberculosis
Rv2004c protein sequences that bind specifically to U937 macrophages and A549 epithelial cells.
Protein Sci. 2005; 14: 2767-80. | spa |
dc.relation.references | Vera-Bravo R, Torres E, Valbuena JJ, et al. Characterising Mycobacterium tuberculosis
Rv1510c protein and determining its sequences that specifically bind to two target cell lines Biochem
Biophys Res Commun. 2005; 332: 771-81 | spa |
dc.relation.references | Patarroyo MA, Curtidor H, Plaza DF, et al. Peptides derived from the Mycobacterium
tuberculosis Rv1490 surface protein implicated in inhibition of epithelial cell entry: potential vaccine
candidates? Vaccine. 2008; 26: 4387-95. | spa |
dc.relation.references | Plaza DF, Curtidor H, Patarroyo MA, et al. The Mycobacterium tuberculosis membrane
protein Rv2560--biochemical and functional studies. FEBS J. 2007; 274: 6352-64 | spa |
dc.relation.references | Patarroyo MA, Plaza DF, Ocampo M, et al. Functional characterization of Mycobacterium
tuberculosis Rv2969c membrane protein. Biochem Biophys Res Commun. 2008; 372: 935-40. | spa |
dc.relation.references | Cifuentes DP, Ocampo M, Curtidor H, et al. Mycobacterium tuberculosis Rv0679c protein
sequences involved in host-cell infection: potential TB vaccine candidate antigen. BMC Microbiol.
2010; 10: 109. | spa |
dc.relation.references | Caceres SM, Ocampo M, Arevalo-Pinzon G, Jimenez RA, Patarroyo ME and Patarroyo MA.
The Mycobacterium tuberculosis membrane protein Rv0180c: Evaluation of peptide sequences
implicated in mycobacterial invasion of two human cell lines. Peptides. 2011; 32: 1-10. | spa |
dc.relation.references | Ocampo M, Aristizábal-Ramírez D, Rodríguez DM, et al. The role of Mycobacterium
tuberculosis Rv3166c protein-derived high-activity binding peptides in inhibiting invasion of human cell
lines. Protein Engineering, Design and Selection. 2012; 25: 235-42 | spa |
dc.relation.references | Ocampo M, Rodriguez DM, Curtidor H, Vanegas M, Patarroyo MA and Patarroyo ME.
Peptides derived from Mycobacterium tuberculosis Rv2301 protein are involved in invasion to human
epithelial cells and macrophages. Amino Acids. 2012; 42: 2067-77. | spa |
dc.relation.references | Ocampo M, Rodriguez DC, Rodriguez J, et al. Rv1268c protein peptide inhibiting
Mycobacterium tuberculosis H37Rv entry to target cells. Bioorg Med Chem. 2013; 21: 6650-6. | spa |
dc.relation.references | Rodriguez DC, Ocampo M, Varela Y, Curtidor H, Patarroyo MA and Patarroyo ME. Mce4F
Mycobacterium tuberculosis protein peptides can inhibit invasion of human cell lines. Pathog Dis.
2015; 73. | spa |
dc.relation.references | Rodríguez DM, Ocampo M, Curtidor H, Vanegas M, Patarroyo ME and Patarroyo MA.
Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which
inhibit cell invasion. Biol Chem. 2012; 38: 208–16. | spa |
dc.relation.references | Rodriguez DC, Ocampo M, Reyes C, et al. Cell-Peptide Specific Interaction Can Inhibit
Mycobacterium tuberculosis H37Rv Infection. J Cell Biochem. 2016; 117: 946-58 | spa |
dc.relation.references | Diaz DP, Ocampo M, Varela Y, Curtidor H, Patarroyo MA and Patarroyo ME. Identifying and
characterising PPE7 (Rv0354c) high activity binding peptides and their role in inhibiting cell invasion.
Mol Cell Biochem. 2017; 430: 149-60 | spa |
dc.relation.references | Ocampo M, Curtidor H, Vanegas M, Patarroyo MA and Patarroyo ME. Specific interaction
between Mycobacterium tuberculosis lipoprotein-derived peptides and target cells inhibits
mycobacterial entry in vitro. Chem Biol Drug Des. 2014; 84: 626-41. | spa |
dc.relation.references | Rodríguez DM, Vizcaíno C, Ocampo M, et al. Peptides from the Mycobacterium tuberculosis
Rv1980c protein involved in human cell infection: insights into new synthetic subunit vaccine
candidates. Biol Chem. 2010; 391: 207-2017 | spa |
dc.relation.references | Sanchez-Barinas CD, Ocampo M, Vanegas M, Castaneda-Ramirez JJ, Patarroyo MA and
Patarroyo ME. Mycobacterium tuberculosis H37Rv LpqG Protein Peptides Can Inhibit Mycobacterial
Entry through Specific Interactions. Molecules. 2018; 23. | spa |
dc.relation.references | Chapeton-Montes JA, Plaza DF, Curtidor H, et al. Characterizing the Mycobacterium
tuberculosis Rv2707 protein and determining its sequences which specifically bind to two human cell
lines. Protein Sci. 2008; 17: 342–51. | spa |
dc.relation.references | Carabali-Isajar ML, Ocampo M, Rodriguez DC, et al. Towards designing a synthetic
antituberculosis vaccine: The Rv3587c peptide inhibits mycobacterial entry to host cells. Bioorg Med
Chem. 2018; 26: 2401-9. | spa |
dc.relation.references | Curtidor H, Patarroyo ME, Patarroyo MA. Avances recientes en el desarrollo de una vacuna
antipalúdica sintetizada químicamente Experto. Opin. Biol. El r. , 15 ( 11 ) ( 2015 ) , pp. 1,567 mil -
1581. | spa |
dc.relation.references | Patarroyo ME, Patarroyo MA, Pabon L, Curtidor H, Poloche LA. Estructuras proteicas
inductoras de protección inmunitaria (IMPIPS) contra la malaria: las armas necesarias para vencer a
Ulises Vacuna, 33 ( 52 ) ( 2015 ), págs. 7525 – 7537 | spa |
dc.relation.references | Garcia-Rodriguez, K.M., Bini, E.I., Gamboa-Domínguez, A. et al. Differential mast cell numbers
and characteristics in human tuberculosis pulmonary lesions. Sci Rep [Internet]. 2021 [cited 30 March
2022]; 10687 (11): 1 - 9 | spa |
dc.relation.references | DHEDA K, SCHWANDER S, ZHU B, van ZYL-SMIT R, ZHANG Y. The immunology of
tuberculosis: From bench to bedside. Respirology [Internet]. 2010 [cited 21 April 2021];
15(3):433-450. | spa |
dc.relation.references | Dallenga T, Schaible U. Neutrophils in tuberculosis – first line of defense or booster of disease
and targets for host directed therapy?. Pathogens and Disease [Internet]. 2016 [cited 21 April 2021];
ftw012. | spa |
dc.relation.references | Tan B, Meinken C, Bastian M, Bruns H, Legaspi A, Ochoa M et al. Macrophages Acquire
Neutrophil Granules for Antimicrobial Activity against Intracellular Pathogens. The Journal of
Immunology [Internet]. 2006 [cited 21 April 2021]; 177(3): 1864-1871. | spa |
dc.relation.references | Martineau A, Newton S, Wilkinson K, Kampmann B, Hall B, Nawroly N et al. Neutrophil-mediated
innate immune resistance to mycobacteria. Journal of Clinical Investigation [Internet]. 2007 [cited 21
April 2021]; 117(7): 1988-1994. | spa |
dc.relation.references | Andersson A, Larsson M, Stendahl O, Blomgran R. Efferocytosis of Apoptotic Neutrophils
Enhances Control of Mycobacterium tuberculosis in HIV-Coinfected Macrophages in a
Myeloperoxidase-Dependent Manner. Journal of Innate Immunity [Internet]. 2019 [cited 21 April
2021];12(3):235-247 | spa |
dc.relation.references | Perskvist N, Long M, Stendahl O, Zheng L. Mycobacterium tuberculosis Promotes Apoptosis in
Human Neutrophils by Activating Caspase-3 and Altering Expression of Bax/Bcl-xLVia an
Oxygen-Dependent Pathway. The Journal of Immunology [Internet]. 2002 [cited 21 April 2021]; 168
(12): 6358-6365. | spa |
dc.relation.references | Alemán M, Schierloh P, de la Barrera S, Musella R, Saab M, Baldini M et al. Mycobacterium
tuberculosis Triggers Apoptosis in Peripheral Neutrophils Involving Toll-Like Receptor 2 and p38
Mitogen Protein Kinase in Tuberculosis Patients. Infection and Immunity [Internet]. 2004 [cited 21
April 2021]; 72 (9): 5150-5158 | spa |
dc.relation.references | Ottonello L, Frumento G, Arduino N, Dapino P, Tortolina G, Dallegri F. Immune complex
stimulation of neutrophil apoptosis: investigating the involvement of oxidative and nonoxidative
pathways. Free Radical Biology and Medicine [Internet]. 2001 [cited 21 April 2021]; 30(2): 161-169. | spa |
dc.relation.references | Vermeren S, Karmakar U, Rossi A. Immune complex-induced neutrophil functions: A focus
on cell death. European Journal of Clinical Investigation [Internet]. 2018 [cited 21 April 2021];
48:e12948 | spa |
dc.relation.references | Cartes J. Breve Historia de la Tuberculosis. Rev Med de Costa Rica y Centroamerica LXX
[Internet]. 2021 [cited 23 April 2021]; 605:145 - 150. | spa |
dc.relation.references | Frieden T, Lerner B, Rutherford B. Lessons from the 1800s: tuberculosis control in the new
millennium. The Lancet [Internet]. 2000 [cited 21 April 2021]; 355 (9209): 1088-1092. | spa |
dc.relation.references | Cabello F. Tuberculosis, 3ra edición. Rev. méd. Chile [Internet]. 2011 [citado 21 Abril 2021] ;
139( 5 ): 681-682 | spa |
dc.relation.references | Cummings K. Tuberculosis Control: Challenges of an Ancient and Ongoing Epidemic. Public
Health Reports [Internet]. 2007 [cited 21 April 2021];122(5):683-692 | spa |
dc.relation.references | Lozano J, Tuberculosis. Patogenia, diagnóstico y tratamiento. Rev Offarm [Internet]. 2002 [cited
21 April 2021]; 21 (8): 102 – 110 | spa |
dc.relation.references | O'Garra A, Redford P, McNab F, Bloom C, Wilkinson R, Berry M. The Immune Response in
Tuberculosis. Annual Review of Immunology [Internet]. 2013 [cited 21 April 2021]; 31 (1): 475-527 | spa |
dc.relation.references | Domínguez Del Valle F. J., Fernández B., Pérez de las Casas M., Marín B., Bermejo C.. Clínica y
radiología de la tuberculosis torácica. Anales Sis San Navarra [Internet]. 2007 [citado 21 Abril
2021] ; 30( Suppl 2 ): 33-48 | spa |
dc.relation.references | ) Calvo J, Bernal M. Tuberculosis. Diagnóstico y tratamiento. Neumosur [Internet]. [cited 21 April
2021]; 43: 487 - 497 | spa |
dc.relation.references | Pérez J. Patrones inmunopatológicos de la tuberculosis en pacientes con compromiso de la
respuesta inmune celular. MedUNAB [Internet], 2006 [citado 21 Abril 2021]: 9(3), 221-229. | spa |
dc.relation.references | Kumar K, Kon O. Diagnosis and treatment of tuberculosis: latest developments and future
priorities. Annals of Research Hospitals [Internet]. 2017 [cited 21 April 2021];1 (37):1-15 | spa |
dc.relation.references | Kleinnijenhuis J, Oosting M, Joosten L, Netea M, Van Crevel R. Innate Immune Recognition of
Mycobacterium tuberculosis. Clinical and Developmental Immunology [Internet]. 2011 [cited 21 April
2021]; 2011:1-12 | spa |
dc.relation.references | Kaur D, Guerin M, Škovierová H, Brennan P, Jackson M. Chapter 2 Biogenesis of the Cell Wall
and Other Glycoconjugates of Mycobacterium tuberculosis. Advances in Applied Microbiology
[Internet]. 2009 [cited 21 April 2021]; 23-78. | spa |
dc.relation.references | Fox K, Kirwan D, Whittington A, Krishnan N, Robertson B, Gilman R et al. Platelets Regulate
Pulmonary Inflammation and Tissue Destruction in Tuberculosis. American Journal of Respiratory and
Critical Care Medicine [Internet]. 2018 [cited 21 April 2021]; 198(2): 245-255 | spa |
dc.relation.references | Romero M, Ritacco V, López B, Alemán M. Papel de los α-glucanos de la cápsula del
Mycobacterium tuberculosis en la inducción del estallido respiratorio en células del sistema inmune.
Academia Nacional de Uruguay [Internet]. 2010 [citado 21 Abril 2021]; 1 – 71 | spa |
dc.relation.references | MA, Klepp LI, Gioffre A, et al. Virulence factors of the Mycobacterium tuberculosis complex.
Virulence. 2013; 4: 3-66. | spa |
dc.relation.references | Dorronsoro I, Torroba L. Microbiología de la tuberculosis. Anales Sis San Navarra [Internet].
2007 [citado 21 Abril 2021]; 30( Suppl 2 ): 67-85 | spa |
dc.relation.references | Bespiatykh D, Bespyatykh J, Mokrousov I, Shitikov E. A Comprehensive Map of Mycobacterium
tuberculosis Complex Regions of Difference. mSphere [Internet]. 2021 [cited 30 March
2022];6(4):e0053521. | spa |
dc.relation.references | Smith N, Kremer K, Inwald J, Dale J, Driscoll J, Gordon S et al. Ecotypes of the Mycobacterium
tuberculosis complex. Journal of Theoretical Biology [Internet]. 2006 [cited 21 April
2021];239(2):220-22 | spa |
dc.relation.references | WHO. Global Tuberculosis Report. 2021 | spa |
dc.relation.references | Instituto Nacional de Salud. Vigilancia y Análisis del Riesgo en Salud Pública. Protocolo de
Vigilancia en Salud Pública Tuberculosis Farmacorresistente. MinSalud [Internet]. 2020 [citado 21
Abril 2021]; versión 3: 2 - 31. | spa |
dc.relation.references | Yang H, Kruh-Garcia N, Dobos K. Purified protein derivatives of tuberculin — past, present, and
future. FEMS Immunology & Medical Microbiology [Internet]. 2012 [cited 21 April 2021];
66(3):273-280 | spa |
dc.relation.references | CDC | TB | Hojas informativas - Pruebas de tuberculosis [Internet]. Cdc.gov. 2021 [cited 21
April 2021] | spa |
dc.relation.references | Ruiz-Manzano J, Blanquer R, Luis Calpe J, Caminero J, Caylà J, Domínguez J et al. Diagnóstico
y tratamiento de la tuberculosis. Archivos de Bronconeumología [Internet]. 2008 [cited 21 April
2021];44(10):551-566 | spa |
dc.relation.references | Lu L, Smith M, Yu K, Luedemann C, Suscovich T, Grace P et al. IFN-γ-independent immune
markers of Mycobacterium tuberculosis exposure. Nature Medicine [Internet]. 2019 [cited 21 April
2021];25(6):977-987. | spa |
dc.relation.references | Llaca J, Florez A, Martínez M, Cantú P. La Baciloscopia y el Cultivo en el Diagnóstico de la
Tuberculosis Extrapulmonar. RESPYN [Internet]. 2003 [citado 21 Abril 2021]; 4(3);1 - 6. | spa |
dc.relation.references | INCIENSA. Manual de Normas y Procedimientos Técnicos para el Diagnóstico Bacteriológico
de la Tuberculosis. Gaceta [Internet]. 2016 [citado 21 Abril 2021]: 1 - 84. | spa |
dc.relation.references | Salud O. Manual para el diagnóstico bacteriológico de la tuberculosis: Normas y Guía
Técnica. Parte I Baciloscopia [Internet]. Iris.paho.org. 2021 [citado 21 Abril 2021] | spa |
dc.relation.references | Salud O. Manual para el diagnóstico bacteriológico de la tuberculosis: Normas y Guía
Técnica. Parte I Baciloscopia [Internet]. Iris.paho.org. 2021 [citado 21 Abril 2021] | spa |
dc.relation.references | Hilda J, Das S, Tripathy S, Hanna L. Role of neutrophils in tuberculosis: A bird's eye view. Innate
Immunity [Internet]. 2019 [cited 21 April]; 26 (4): 240-247 | spa |
dc.relation.references | ) Chu, J. Y., Dransfield, I., Rossi, A. G., & Vermeren, S. Non-canonical PI3K-Cdc42-Pak-Mek-Erk
Signaling Promotes Immune-Complex-Induced Apoptosis in Human Neutrophils. Cell reports
[Internet]. 2016 [cited 30 March 2022]; 17(2), 374–386 | spa |
dc.relation.references | Vermeren S., Karmakar U., Rossi A. G. Immune complex-induced neutrophil functions: A
focus on cell death | spa |
dc.relation.references | Karmakar, U., Chu, J.Y., Sundaram, K. et al. Immune complex-induced apoptosis and
concurrent immune complex clearance are anti-inflammatory neutrophil functions. Cell Death Dis
[Internet]. 2021 [cited 31 March 2022]; 1 - 13 | spa |
dc.relation.references | PAHO. Fases de desarrollo de una vacuna. [cited 30 March 2022] | spa |
dc.relation.references | Scanelles S. R., Albert G. J. El citoesqueleto: un componente fundamental en la arquitectura y
en la fisiología celular [Internet]. 2016 [cited 21 April 2021]. 35(4):102-114. | spa |
dc.relation.references | Buccione, R., Orth, J. and McNiven, M.. Foot and mouth: podosomes, invadopodia and
circular dorsal ruffles. Nature Reviews Molecular Cell Biology [Internet], 2004 [cited 30 March 2022];
5 (8): pp.647-657 | spa |
dc.relation.references | BepiRed 2.0 BepiPred-2.0 [Internet]. Cbs.dtu.dk. 2021 [cited 23 April 2021] | spa |
dc.relation.references | Cytiva. CNBr-activated Sepharose 4B. 2020, p. 3-14 | spa |
dc.relation.references | Vector laboratories. Kit de sustrato Vector® VIP, peroxidasa (HRP) - (SK-4600). 2020. | spa |
dc.relation.references | Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of
mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and
sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968; 97: 77-89 | spa |
dc.relation.references | Lu LL, Chung AW, Rosebrock TR, et al. A Functional Role for Antibodies in Tuberculosis. Cell
[Internet]. 2016 [cited 30 March 2022];167(2):433-443.e14.
(84) Forthal D. Functions of Antibodies. ASM Journals [Internet]. 2014 [cited 30 march 2022]; 2(4):
1 - 17 | spa |
dc.relation.references | Zimmermann N, Thormann V, Hu B, et al. Human isotype-dependent inhibitory antibody
responses against Mycobacterium tuberculosis. EMBO Mol Med [Internet]. 2016 [cited 23 May 2022];
8 (11):1325-1339. | spa |
dc.relation.references | Ocampo M, Patarroyo MA, Vanegas M, Alba MP, Patarroyo ME. Functional, biochemical and 3D
studies of Mycobacterium tuberculosis protein peptides for an effective anti-tuberculosis vaccine. Crit
Rev Microbiol [Internet]. 2014 [cited 1 June 2022];40(2):117-45 | spa |
dc.relation.references | Alfonso P. Apoptosis de neutrófilos mediada por anticuerpos dirigidos contra péptidos derivados
de proteínas de Mycobacterium tuberculosis H37Rv. UCMC [Internet]. 2019 [citado 23 Mayo 2022. | spa |
dc.relation.references | Briken V, Ahlbrand SE and Shah S. Mycobacterium tuberculosis and the host cell inflammasome:
a complex relationship. Front. Cell. Infect. Microbiol [Internet]. 2013 [cited 30 March 2022]; 3: 62. | spa |
dc.relation.references | Eklund D., Welin A., Andersson H., Depti V, Söderkvist P., Stendahl O., Särndahl E., Lerm M.
Human Gene Variants Linked to Enhanced NLRP3 Activity Limit Intramacrophage Growth of
Mycobacterium tuberculosis [Internet]. (2014). [cited 30 March 2022] | spa |
dc.relation.references | Carlsson F., Kim J., Dumitru C., Barck K. H., Carano R. A., Sun M., Diehl L., Brown E. J.
Host-Detrimental Rol of Esx-1-Mediated inflammasome Activation in Mycobacterial infection [Internet].
(2010). [cited 30 March 2022] | spa |
dc.relation.references | Dallenga T., Repnik U., Corleis B., Reimer R., Griffiths G. W., Schaible U. E. M.
tuberculosis-Induced Necrosis of infected Neutrophils Promotores Bacterial Growth Following
Phagocytosis by Macrophages [Internet]. (2017). [cited 30 March 2022]. V22,ISSUE4, P519-530.E3 | spa |
dc.relation.references | Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector
functions. Front Immunol [Internet]. 2014 [cited 30 march 2022]; 5:520. | spa |
dc.relation.references | Pincetic A., Bournazos S., DiLillo D., Maamary J., Wang T., Dahan R et al. Type I and type II Fc
receptors regulate innate and adaptive immunity. Nat Immunol [Internet]. 2014 [cited 30 march
2022];15(8):707-16. | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.lemb | Tuberculosis | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |