Mostrar el registro sencillo del ítem
Vectores virales como opción terapéutica para la regresión de tumores provocados por el Virus del Papiloma Bovino VPB
dc.contributor.advisor | Sánchez Mora, Ruth Mélida | |
dc.contributor.author | Pico Tamayo, Nicole Andrea | |
dc.date.accessioned | 2023-04-17T15:24:01Z | |
dc.date.available | 2023-04-17T15:24:01Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://repositorio.universidadmayor.edu.co/handle/unicolmayor/6520 | |
dc.description.abstract | La literatura reporta que los Papillomavirus, pequeños virus de ADN, son específicos de especie, y no suelen afectar a especies que no sean su originaria. Sin embargo, se han reportado casos de infecciones del Virus del Papiloma Bovino tipo 1 y 2, afectando no solo a bovinos sino también a equinos. En los bovinos, el VPB causa lo que comúnmente se conoce como papilomatosis bovina, la cual es una enfermedad que demuestra una regresión espontánea en la mayoría de los casos sin causar mayores consecuencias para los animales infectados, mientras que en los equinos, la enfermedad que se produce tras la infección por este mismo virus se denomina sarcoidosis equina, la cual es clínicamente más severa, no demuestra regresión natural y en ocasiones, conduce a la muerte del animal si no se trata de la mejor manera. Allí radica la importancia de indagar sobre nuevos tratamientos, especialmente para combatir la sarcoidosis equina, quienes demuestren una mayor eficacia para conservar la vida de los animales infectados. De esta manera, la presente monografía hace un recorrido bibliográfico para llegar a explicar cómo se produce el fenómeno de regresión espontánea de los tumores, qué factores influyen en este proceso y resalta el uso de vectores virales, especialmente de aquellos provenientes del Virus de la Influenza A y B, genéticamente modificados para que, gracias a la producción mejorada de IFN-γ, estimule la regresión de los tumores causados por el VPB en los equinos. | spa |
dc.description.abstract | The literature reports that Papillomaviruses, small DNA viruses, are species specific, and do not usually affect species other than their original one. However, cases of Bovine Papillomavirus type 1 and 2 infections have been reported, affecting not only cattle but also horses. In cattle, BPV causes what is commonly known as bovine papillomatosis, which is a disease that shows spontaneous regression in most cases without causing major consequences for infected animals, while in horses, the disease that occurs after infection by this same virus is called equine sarcoidosis, which is clinically more severe, does not show natural regression and sometimes leads to the death of the animal if it is not treated in the best way. Therein lies the importance of investigating new treatments, especially to combat equine sarcoidosis, which demonstrate greater efficacy in preserving the lives of infected animals. In this way, this monograph reviews the literature to explain how the phenomenon of spontaneous regression of tumors occurs, what factors influence this process and highlights the use of viral vectors, especially those from the Influenza Virus. A and B, genetically modified so that, thanks to the improved production of IFN-γ, it stimulates the regression of tumors caused by VPB in horses. | eng |
dc.description.tableofcontents | Introducción -1 Objetivos 3 1. Marco teórico - 1.1 Generalidades del Virus del Papiloma Bovino (VPB) 4 1.1.1 Taxonomía del VPB -4 1.1.2 Estructura del VPB 4 1.1.3 Clasificación de serotipos virales del VPB - 5 1.1.4 Genoma del VPB 1.2 Epidemiología 6 1.3 Especies afectadas por el VPB - 7 1.4 Infección natural por el VPB 8 1.4.1 Actividad transformadora de la oncoproteína E5 - 9 1.4.2 Actividad transformadora de la oncoproteína E6 - 10 1.5 Manifestaciones clínicas - 10 1.5.1 Papilomatosis bovina 10 1.5.2 Sarcoidosis equina 11 1.6 Opciones terapéuticas para tratar el VPB 2. Antecedentes 14 3. Metodología - 18 3.1 Tipo y alcance de la investigación -18 3.2 Población y muestra 18 3.3 Procedimiento, técnica o método 18 3.3.1 Búsqueda y revisión de información existente 18 3.3.2 Selección del material consultado -19 3.3.3 Clasificación de la información -20 4. Resultados y discusión 21 4.1 Regresión de tumores ocasionados por el VPB 21 4.2 Vectores virales como opción terapéutica en la regresión de tumores ocasionados por el VPB - 22 4.3 Terapias utilizadas para la regresión de tumores en bovinos ocasionados por el VPB - 25 4.3.1 Inmunización directa - 25 4.3.2 Inmunización recombinante - 25 4.4 Terapias utilizadas para la regresión de tumores en equinos ocasionados por el VPB - 27 4.4.1 Terapias generales 27 4.4.2 Inmunización por medio de vacunas 28 5. Conclusiones 32 | spa |
dc.format.extent | 52p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Vectores virales como opción terapéutica para la regresión de tumores provocados por el Virus del Papiloma Bovino VPB | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogota | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Lunardi M, Alcindo A, Arellano RA, Fernandes A. Bovine Papillomaviruses - Taxonomy and Genetic Features. Romanowski V, editor. Current issues in Molecular Virology. Viral Genetics and Biotechnological Applications. IntechOpen [Online] 2013 [cited 5 jun 2022] p. 113-136. Available in: http://dx.doi.org/10.5772/56195 | spa |
dc.relation.references | Borzacchiello G, Roperto F. Bovine papillomaviruses, papillomas and cancer in cattle. Veterinary Research, BioMed Central [Online] 2008 [cited 5 jun 2022]; 39 (5): Available in: https://hal.archives-ouvertes.fr/hal-00902936/document | spa |
dc.relation.references | Carter GR, Wise DJ. Papillomaviridae. Carter GR, Wise DJ, De Miguel NA, editor. Concise Review of Veterinary Virology. International Veterinary Information Service [Online] 2008 [cited 5 jun 2022]. Available in: https://www.ivis.org/library/concise-review-of-veterinary-virology | spa |
dc.relation.references | Santos G, Márquez L, Reyes J, Vallejo V. Aspectos generales de la estructura, la clasificación y la replicación del virus del papiloma humano. Revista Médica del Instituto Mexicano del Seguro Social [Internet] 2015 [citado 5 junio 2022]; 53 (2):166-71. Disponible en: https://www.medigraphic.com/pdfs/imss/im-2015/ims152h.pdf | spa |
dc.relation.references | Méndez I. Tipificación viral y características inmunopatológicas de la fibropapilomatosis bovina en diferentes regiones de San Luis Potosí [Tesis Doctoral] [Internet]. San Luis Potosí, México: Universidad Autónoma de San Luis Potosí; 2019. Disponible en: http://www.agronomia.uaslp.mx/Documents/DCA/Tesis/Isaura%20Mendez%20Rodriguez.pd f | spa |
dc.relation.references | De la Fuente D, Guzmán S, Barboza O, González R. Biología del Virus del Papiloma Humano y técnicas de diagnóstico. Revista Medicina Universitaria [Internet] 2010 [citado 5 junio 2022]; 12(49):231-238. Disponible en: https://www.elsevier.es/en-revista-medicina-universitaria-304-pdf-X1665579610901659 | spa |
dc.relation.references | Corteggio A, Altamura G, Roperto F, Borzacchiello G. Bovine papillomavirus EY and E7 oncoproteins in naturally occurring tumors: are two better than one? Infect Agent Cancer [Online] 2013 [cited 5 jun 2022]; 8 (1): 1. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562249/ | spa |
dc.relation.references | Munday JS. Bovine and human papillomaviruses: a comparative review. Veterinary Pathology [Online] 2014 [cited 5 jun 2022]; 51 (6): 1063-75. Available in: https://pubmed.ncbi.nlm.nih.gov/24981715/ | spa |
dc.relation.references | Vasquez R, Escudero C, Domenech A, Gomez L, Benitez L. Papilomatosis bovina: Epidemiología y diversidad de Papillomavirus bovinos (BPV). Revista Complutense de Ciencias Veterinarias [Internet] 2012 [citado 5 junio 2022]; 6(2):38-57. Disponible en: http://www.ucm.es/BUCM/revistasBUC/portal/modulos.php?name=Revistas2&id=RCCV&c ol=1 | spa |
dc.relation.references | Villafañe F, Orrego A, Gonzales G, Puerta R, de Báez E. La Papilomatosis faríngea bovina en Colombia. ACOVEZ [Internet] 1979 [citado 5 junio 2022]; 3 (10):10-14. Disponible en: https://repository.agrosavia.co/bitstream/handle/20.500.12324/23551/22700_3646.pdf?seque nce=1&isAllowed=y | spa |
dc.relation.references | Peña N, Villafañe F, Torres J, Marquez D. Papilomatosis faringea bovina. Estudio de epidemiología en el sur-oriente de Santander. ACOVEZ [Internet] 1984 [citado 5 junio 2022]; 8(26):4-12. Disponible en: https://repository.agrosavia.co/bitstream/handle/20.500.12324/29098/26500_13075.pdf?sequ ence=1&isAllowed=y | spa |
dc.relation.references | Valencia C, Payan J, Appel V, Salazar H. Valoración de la eficacia del cobre contra la papilomatosis bovina en el departamento del Cauca. Biotecnología en el Sector Agropecuario y Agroindustrial [Internet] 2013 [citado 5 junio 2022]; 11(1):218-224. Disponible en: http://www.scielo.org.co/pdf/bsaa/v11n1/v11n1a25.pdf | spa |
dc.relation.references | Bolaños A, Florez G, Montealegre N, Perdomo D, Trujillo J, Sanchez L, et al. Eficacia terapéutica del clorobutanol (Verruex®) en el tratamiento de papilomatosis bovina. Estudio en cuatro predios en Caquetá, Colombia. REDVET. Revista Electrónica de Veterinaria [Internet] 2017 [citado 5 junio 2022]; 18(10):1-8. Disponible en: https://www.redalyc.org/pdf/636/63653470018.pdf | spa |
dc.relation.references | Cardona J, Montes D, Alvarez J. Caracterización clínica, histopatológica e histoquímica del papiloma cutáneo en bovinos (Bos taurus) del departamento de Córdoba, Colombia. UDCA Actualidad & Divulgación Científica [Internet] 2018 [citado 5 junio 2022]; 21 (1): 137-146. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0123-42262018000100137&l ng=en&nrm=iso&tlng=es | spa |
dc.relation.references | Saveria M. Animal models of papillomavirus pathogenesis. Virus Research [Online] 2002 [cited 5 jun 2022]; 89 (2): 249-261. Available in: https://www.sciencedirect.com/science/article/abs/pii/S0168170202001934?via%3Dihub | spa |
dc.relation.references | Frías A, Jara M, Escobar L. Papillomavirus in Wildlife. Frontiers in Ecology and Evolution [Online] 2019 [cited 5 jun 2022]. Available in: https://acortar.link/SW7oNv | spa |
dc.relation.references | Diniz N, Melo TC, Santos JF, Mori E, Brandão PE, Richtzenhain LJ, et al. Simultaneous presence of bovine papillomavirus in blood and in short-term lymphocyte cultures from dairy cattle in Pernambuco, Brazil. Genet Mol Res [Online] 2009 [cited 8 jun 2022]; 8 (4): 1474-80. Available in: https://pubmed.ncbi.nlm.nih.gov/20082260/ | spa |
dc.relation.references | Nasir L, Saveria M. Bovine papillomaviruses: their role in the etiology of cutaneous tumors of bovids and equids. Veterinary Dermatology [Online] 2008 [cited 8 jun 2022]; 19 (5): 243-254. Available in: https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3164.2008.00683.x | spa |
dc.relation.references | Shafti-Keramat S, Schellenbacher C, Handisurya A, Christensen N, Reininger B, Brandt S, et al. Bovine papillomavirus type 1 (BPV1) and BPV2 are closely related serotypes. Virology [Online] 2009 [cited 8 jun 2022]; 393 (1): 1-6. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792341/ | spa |
dc.relation.references | Chambers G, Ellsmore VA, O’Brien P, Reid S, Love S, Campo M, et al. Association of bovine papillomavirus with the equine sarcoid. Journal of General Virology [Online] 2003 [cited 8 jun 2022]; 84 (5). Available in: https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.18947-0 | spa |
dc.relation.references | Bogaert L, Van Poucke M, De Baere C, Dewulf J, Peelman L, Ducatelle R, et al. Bovine papillomavirus load and mRNA expression, cell proliferation and p53 expression in four clinical types of equine sarcoid. Journal of General Virology [Online] 2007 [cited 8 jun 2022]; 88 (8). Available in: https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.82876-0#tab2 | spa |
dc.relation.references | Nasir L, Brandt S. Papillomavirus associated diseases of the horse. Veterinary Microbiology [Online] 2013 [cited 8 jun 2022]; 167(1-2): 159–167. Available in: https://sci-hub.se/https://doi.org/10.1016/j.vetmic.2013.08.003 | spa |
dc.relation.references | Namgyel U, Wangdi K, Pem R, Rinchen S, Wangchuk P, Peldom S, et al. Effectiveness of different treatment protocols against cutaneous bovine papillomatosis (wart): a clinical trial study. Bhutan Journal of Animal Science [Online] 2021 [cited 8 jun 2022]; 5 (1): 95–102. Available in: http://202.144.157.184/index.php/bjas/article/view/14/9 | spa |
dc.relation.references | Archana S, Prasad A, Davis J, Seena T. Bovine Papillomatosis and its Treatment under Farm Condition. International Journal of Current Microbiology and Applied Sciences [Online] 2019 [cited 8 jun 2022]; 8 (4): 2319-7706. Available in: https://acortar.link/NX9NYF | spa |
dc.relation.references | Ugochukwu I, Aneke C, Idoko I, Sani N, Amoche A, Mshiela W, et al. Bovine papilloma: aetiology, pathology, immunology, disease status, diagnosis, control, prevention and treatment: a review. Comparative Clinical Pathology [Online] 2018 [cited 8 jun 2022] Available in: https://sci-hub.se/https://link.springer.com/article/10.1007/s00580-018-2785-3 | spa |
dc.relation.references | Jindra C, Hainisch EK, Rümmele A, Wolschek M, Muster T, Brandt S. Influenza virus vector iNS1 expressing bovine papillomavirus 1 (BPV1) antigens efficiently induces tumour regression in equine sarcoid patients. PLoS One [Online] 2021 [cited 28 jun 2022]; 16 (11): e0260155. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604313/ | spa |
dc.relation.references | Zeng Z, Veitch M, Kelly GA, Tuong ZK, Cruz JG, Frazer IH, et al. IFN-γ Critically Enables the Intratumoural Infiltration of CXCR3+ CD8+ T Cells to Drive Squamous Cell Carcinoma Regression. Cancers [Online] 2021 [cited 28 jun 2022]; 13 (9): 2131. Available in: https://www.mdpi.com/2072-6694/13/9/2131/htm | spa |
dc.relation.references | Hefferon K. Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines [Online] 2017 [cited 28 jun 2022]; 5 (3): 44. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618302/ | spa |
dc.relation.references | Saveria M, Grindlay G, O’Neil B, Chandrachud L, McGarvie G, Jarrett W. Prophylactic and therapeutic vaccination against a mucosal papillomavirus. Journal of General Virology [Online] 1993 [cited 28 jun 2022]; 74: 945-953. Available in: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.599.6314&rep=rep1&type=pdf | spa |
dc.relation.references | Jessy T. Immunity over inability: The spontaneous regression of cancer. Journal of Natural Science, Biology and Medicine [Online] 2011 [cited 28 jun 2022]; 2 (1): 43-9. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312698/ | spa |
dc.relation.references | Salman T. Spontaneous tumor regression. Journal of Oncological Science [Online] 2016 [cited 28 jun 2022]; 2 (1): 1-4. Available in: https://www.sciencedirect.com/science/article/pii/S2452336416300255?via%3Dihub | spa |
dc.relation.references | Lin K, Doolan K, Hung CF, Wu TC. Perspectives for preventive and therapeutic HPV vaccines. J Formos Med Assoc [Online] 2010 [cited 28 jun 2022]; 109 (1): 4-24. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908016/ | spa |
dc.relation.references | Chabeda A, Yanez RJ, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Res [Online] 2018 [cited 28 jun 2022]; 5: 46-58. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5887015/ | spa |
dc.relation.references | Egorov A, Brandt S, Sereinig S, Romanova J, Ferko B, Katinger D, et al. Transfectant influenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. JVirol [Online] 1998 [cited 28 jun 2022]; 72 (8): 6437-41. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC109801/ | spa |
dc.relation.references | Muster T, Rajtarova J, Sachet M, Unger H, Fleischhacker R, Romirer I, et al. Interferon resistance promotes oncolysis by influenza virus NS1-deletion mutants. Int. J. Cancer [Online] 2004 [cited 28 jun 2022]; 110: 15-21. Available in: https://onlinelibrary.wiley.com/doi/10.1002/ijc.20078 | spa |
dc.relation.references | Knowles G, O’Neil B, Saveria M. Phenotypical Characterization of Lymphocytes Infiltrating Regressing Papillomas. Journal of Virology [Online] 1996 [cited 28 jun 2022]; 70 (12): 8451-8458. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC190935/pdf/708451.pdf | spa |
dc.relation.references | McGarvie GM, Grindlay GJ, Chandrachud LM, O'Neil BW, Jarrett WF, Campo MS. T cell responses to BPV-4 E7 during infection and mapping of T cell epitopes. Journal of Virology [Online] 1995 [cited 28 jun 2022]; 206 (1): 504-10. Available in: https://pubmed.ncbi.nlm.nih.gov/7530395/ | spa |
dc.relation.references | Jarrett W, Smith K, O’Neil B, Gaukroger J, Chandrachud L, Grindlay G, et al. Studies on vaccination against papillomaviruses: Prophylactic and therapeutic vaccination with recombinant structural proteins. Journal of Virology [Online] 1991 [cited 28 jun 2022]; 184 (1): 33-42. Available in: https://sci-hub.se/https://doi.org/10.1016/0042-6822(91)90819-W | spa |
dc.relation.references | Selvakumar R, Borenstein L, Lin Y, Ahmed R, Wettstein F. Immunization with Nonstructural Proteins E1 and E2 of Cottontail Rabbit Papillomavirus Stimulates Regression of Virus-Induced Papillomas. Journal of Virology [Online] 1995 [cited 28 jun 2022]; 69 (1): 602-605. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC188618/pdf/690602.pdf | spa |
dc.relation.references | Knottenbelt D. The Equine Sarcoid. Veterinary Clinics of North America: Equine Practice [Online] 2019 [cited 28 jun 2022]; 35: 243-262. Available in: https://sci-hub.se/https://doi.org/10.1016/j.cveq.2019.03.006 | spa |
dc.relation.references | Sprayberry K, Robinson N. Section VII: Oncology. ELSEVIER, editor. Robinson’s Current Therapy in Equine Medicine. ELSEVIER [Online] 2015 [cited 5 jun 2022] p. 424-428. Available in: http://dx.doi.org/10.5772/56195 | spa |
dc.relation.references | Taylor S, Haldorson G. A review of equine sarcoid. Equine Veterinary Education [Online] 2013 [cited 28 jun 2022]; 25 (4): 210-216. Available in: https://beva.onlinelibrary.wiley.com/doi/full/10.1111/j.2042-3292.2012.00411.x | spa |
dc.relation.references | Jindra C, Huber B, Shafti-Keramat S, Wolschek M, Ferko B, Muster T, et al. Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach. PLoS One [Online] 2015 [cited 28 jun 2022]; 10 (9): 1-23. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575162/ | spa |
dc.relation.references | Jindra C, Huber B, Shafti-Keramat S, Wolschek M, Ferko B, Muster T, et al. Correction: Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach. PLoS One [Online] 2015 [cited 28 jun 2022]; 10 (11): 1-23. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642983/ | spa |
dc.relation.references | Chambers TM, Quinlivan M, Sturgill T, Cullinane A, Horohov DW, Zamarin D, et al. Influenza A viruses with truncated NS1 as modified live virus vaccines: pilot studies of safety and efficacy in horses. Equine Vet Journal [Online] 2009 [cited 28 jun 2022]; 41 (1): 87-92. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878972/?report=classic | spa |
dc.relation.references | Stanley M. Immunobiology of papillomavirus infections. Journal of Reproductive Immunology [Online] 2001 [cited 28 jun 2022]; 52 (1-2): 45-59. Available in: https://sci-hub.se/https://doi.org/10.1016/S0165-0378(01)00113-9 | spa |
dc.relation.references | Brandt S. Immune response to bovine papillomavirus type 1 in equine sarcoid. The Veterinary Journal [Online] 2016 [cited 28 jun 2022]; 216: 107-108. Available in: https://sci-hub.se/https://www.sciencedirect.com/science/article/abs/pii/S1090023316301095 ?via%3Dihub | spa |
dc.relation.references | Nasir L, Brandt S. Papillomavirus associated diseases of the horse. Veterinary Microbiology [Online] 2013 [cited 28 jun 2022]; 167 (1-2): 159-167. Available in: https://sci-hub.se/https://www.sciencedirect.com/science/article/pii/S0378113513004021?via %3Dihub | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.proposal | Virus del Papiloma Bovino VPB | spa |
dc.subject.proposal | Papilomatosis | spa |
dc.subject.proposal | Sarcoidosis | spa |
dc.subject.proposal | Vectores virales | spa |
dc.subject.proposal | Regresión tumoral | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |