dc.contributor.advisor | López López, Yalile Ibeth | |
dc.contributor.author | Alejo Marín, Laura Yulieth | |
dc.contributor.author | Avendaño Pira, Claudia Marily | |
dc.date.accessioned | 2024-05-20T16:31:10Z | |
dc.date.available | 2024-05-20T16:31:10Z | |
dc.date.issued | 2022-11 | |
dc.identifier.uri | https://repositorio.universidadmayor.edu.co/handle/unicolmayor/6871 | |
dc.description.abstract | La tecnología ha avanzado hasta el surgimiento del láser y su variedad de aplicaciones en medicina, entre ellas por ejemplo, potenciando procesos de cicatrización y mejoramiento de condiciones crónicas en patologías y su sintomatología como el manejo del dolor intenso. También ha resultado ser una herramienta muy útil a nivel quirúrgico, ya que con este se pueden realizar procedimientos importantes sin ser tan invasivos con los tejidos u órganos; esto genera ventajas en el proceso quirúrgico y postquirúrgico (1- 6, 121).
Sumado a esto, la ciencia en pro del avance por obtener células madre (CM), ha evolucionado al punto de usar no solo el aspirado de médula ósea o del cordón umbilical; sino además usar otros tejidos de adulto como: dental (entre ellos la pulpa dental de dientes sin erupcionar), adiposo de la parte abdominal e incluso de la sangre venosa que ha sido estimulada a nivel de la médula ósea usando factores estimulantes de colonias granulocíticas (8, 13, 16, 18, 27, 43).
Es así como en esta investigación se pretende realizar una revisión bibliográfica para evaluar el avance de la tecnología láser enfocada al uso en tratamientos con células madre, la manera en que potencia el crecimiento celular, las ventajas y desventajas de su aplicación y los antecedentes a nivel medicinal que se han registrado hasta la actualidad (1-124). | spa |
dc.description.tableofcontents | Contenido
RESUMEN 9
1. INTRODUCCIÓN 10
2. PROBLEMA DE INVESTIGACIÓN 12
2.1 Justificación 13
3. OBJETIVO 14
3.1 Objetivo general 14
3.2 Objetivos específicos 14
4. MARCO TEÓRICO 15
4.1 Antecedentes. 15
4.2 Células madre o totipotenciales 21
4.3 Obtención Células madre: 23
4.4 Tecnología láser 24
4.5 Protocolo de tratamiento de células madre con uso de irradiación láser 27
4.5.1 Historia clínica, anamnesis, análisis de la lesión o patología a tratar, investigación del caso clínico. 28
4.5.2 Planificación y organización del protocolo adecuado para el tratamiento efectivo de la lesión o patología a tratar 28
4.5.3 Extracción de muestra para obtención de células madre adultas (adiposas, dentales o hematopoyéticas) 29
4.5.4 Almacenamiento y procesamiento de la muestra para la obtención de las células madre. 30
4.5.5 Cultivo y proliferación de células madre 30
4.5.6 Inserción o inyección de células madre listas para su acción en el tejido a reparar 31
4.6 Seguimiento y vigilancia del tejido o lesión tratada con células madre, controles con tecnología láser para el rendimiento de la regeneración celular. 32
4.7 Resultados obtenidos y aproximaciones a tratamientos no evaluados 33
5. DISEÑO METODOLÓGICO 34
5.1 Tipo de investigación y alcance 34
5.2 Universo y población 35
5.3 Muestra 35
5.4 Criterios de elegibilidad 36
5.4.1 criterios de inclusión 36
5.4.2 criterios de exclusión 36
5.5 Metodología 37
6. RESULTADOS 38
6.1 Información sobre tecnología láser 39
6.2 Información sobre aplicaciones de terapia regenerativa con células madre 41
6.3 Información sobre tecnología láser aplicada en tratamientos de células madre 42
7. DISCUSIÓN 44
8. CONCLUSIONES 48
CÉLULAS MADRE Y LÁSER, LAURA ALEJO - MARILY AVENDAÑO 6
9. RECOMENDACIONES 52
10. BIBLIOGRAFÍA 53
11. Anexos 59 | spa |
dc.format.extent | 93p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.title | Aplicaciones de luz láser en regeneración de tejidos con células madre en humanos, sus ventajas y desventajas | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.contributor.corporatename | Universidad Colegio Mayor de Cundinamarca | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá D.C | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Huang SF, Tsai YA, Wu SB, Wei YH, Tsai PY, Chuang TY. Effects of intravascular
laser irradiation of blood in mitochondria dysfunction and oxidative stress in adults with
chronic spinal cord injury. Photomedicine and laser surgery. 2012;30(10):579-86. | spa |
dc.relation.references | Mesquita-Ferrari RA, Alves AN, de Oliveira Cardoso V, Artilheiro PP, Bussadori SK,
Rocha LA, et al. Low-level laser irradiation modulates cell viability and creatine kinase activity
in C2C12 muscle cells during the differentiation process. Lasers in medical science.
2015;30:2209-13. | spa |
dc.relation.references | Wu Y he, Wang J, Gong D xu, Gu H yong, Hu S shou, Zhang H. Effects of low-level
laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers in
medical science. 2012;27:509-19. | spa |
dc.relation.references | Gholami L, Hendi SS, Saidijam M, Mahmoudi R, Tarzemany R, Arkian A, et al. Nearinfrared
940-nm diode laser photobiomodulation of inflamed periodontal ligament stem cells.
Lasers in Medical Science. 2022;1-11. | spa |
dc.relation.references | Zaccara IM, Ginani F, Mota-Filho HG, Henriques ÁCG, Barboza CAG. Effect of lowlevel
laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers in
medical science. 2015;30:2259-64. | spa |
dc.relation.references | Fekrazad R, Asefi S, Allahdadi M, Kalhori KA. Effect of photobiomodulation on
mesenchymal stem cells. Photomedicine and laser surgery. 2016;34(11):533-42. | spa |
dc.relation.references | Crous A, Abrahamse H. Low-intensity laser irradiation at 636 nm induces increased
viability and proliferation in isolated lung cancer stem cells. Photomedicine and laser surgery.
2016;34(11):525-32. | spa |
dc.relation.references | Mvula B, Moore T, Abrahamse H. Effect of low-level laser irradiation and epidermal
growth factor on adult human adipose-derived stem cells. Lasers in Medical Science.
2010;25:33-9. | spa |
dc.relation.references | Villalón HI, Pottiez O, Vieyra AG. El camino hacia la luz láser. EDUCATION.
2018;64(2018):100-7. | spa |
dc.relation.references | Makropoulou M, Kareliotis G, Spyratou E, Drakaki E, Serafetinides A, Efstathopoulos
E. Non-ionizing, laser radiation in Theranostics: The need for dosimetry and the role of Medical
Physics. Physica Medica. 2019;63:7-18. | spa |
dc.relation.references | Condori-Diburga H. Láser en dermatología. Revista Peruana de Dermatología.
2002;12(2). | spa |
dc.relation.references | Gonzalez JG, Alarcón ER. « Laser» en medicina y cirugia. Medicina. 1985;7(3):41-8. | spa |
dc.relation.references | González GM, Sanchez DJ, Sosa CA. Terapia celular con células madre y medicina
regenerativa. Sociedad Internacional de Terapia Celular con Células Madre, Medicina
Regenerativa y Antienvejecimiento, S. C. Editorial Alfil. 2009 | spa |
dc.relation.references | Kofler B, Romani A, Pritz C, Steinbichler TB, Schartinger VH, Riechelmann H, et al.
Photodynamic effect of methylene blue and low level laser radiation in head and neck
squamous cell carcinoma cell lines. International journal of molecular sciences.
2018;19(4):1107. | spa |
dc.relation.references | Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G. The effects of lowlevel
laser irradiation on differentiation and proliferation of human bone marrow mesenchymal
stem cells into neurons and osteoblasts—an in vitro study. Lasers in medical science.
2012;27:423-30. | spa |
dc.relation.references | Karic V, Chandran R, Abrahamse H. 940 nm diode laser induced differentiation of
human adipose derived stem cells to temporomandibular joint disc cells. BMC biotechnology.
2022;22(1):1-12. | spa |
dc.relation.references | Nascimento RXD, Callera F. Low-level laser therapy at different energy densities (0.1–
2.0 J/cm2) and its effects on the capacity of human long-term cryopreserved peripheral blood
progenitor cells for the growth of colony-forming units. Photomedicine and Laser Therapy.
2006;24(5):601-4. | spa |
dc.relation.references | Daigo Y, Daigo E, Fukuoka H, Fukuoka N, Ishikawa M, Takahashi K. Wound healing
and cell dynamics including mesenchymal and dental pulp stem cells induced by
photobiomodulation therapy: an example of socket-preserving effects after tooth extraction in
rats and a literature review. International Journal of Molecular Sciences. 2020;21(18):6850. | spa |
dc.relation.references | Eduardo F de P, Bueno DF, de Freitas PM, Marques MM, Passos‐Bueno MR, Eduardo
C de P, et al. Stem cell proliferation under low intensity laser irradiation: a preliminary study.
Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser
Medicine and Surgery. 2008;40(6):433-8. | spa |
dc.relation.references | Naguib E, Kamel A, Fekry O, Abdelfattah G. Comparative study on the effect of low
intensity laser and growth factors on stem cells used in experimentally-induced liver fibrosis in
mice. Arab journal of gastroenterology. 2017;18(2):87-97. | spa |
dc.relation.references | Weber MH, Fußgänger-May T, Wolf T. Intravenous Laser Blood Irradiation—
Introduction of a New Therapy. Deutsche Zeitschrift für Akupunktur. 2007;50:12-23. | spa |
dc.relation.references | Wu HPP, Persinger MA. Increased mobility and stem-cell proliferation rate in Dugesia
tigrina induced by 880 nm light emitting diode. Journal of Photochemistry and Photobiology
B: Biology. 2011;102(2):156-60. | spa |
dc.relation.references | Zaccara IM, Mestieri LB, Pilar EF, Moreira MS, Grecca FS, Martins MD, et al.
Photobiomodulation therapy improves human dental pulp stem cell viability and migration in
vitro associated to upregulation of histone acetylation. Lasers in Medical Science. 2020;35:741-
9. | spa |
dc.relation.references | Fekrazad R, Ghuchani MS, Eslaminejad M, Taghiyar L, Kalhori K, Pedram M, et al.
The effects of combined low level laser therapy and mesenchymal stem cells on bone
regeneration in rabbit calvarial defects. Journal of Photochemistry and Photobiology B:
Biology. 2015;151:180-5. | spa |
dc.relation.references | de Souza SC, Munin E, Alves LP, Salgado MAC, Pacheco MTT. Low power laser
radiation at 685 nm stimulates stem-cell proliferation rate in Dugesia tigrina during
regeneration. Journal of Photochemistry and Photobiology B: Biology. 2005;80(3):203-7. | spa |
dc.relation.references | Munévar Niño JC, Becerra Calixto A del P, Bermúdez Olaya C. Aspectos celulares y
moleculares de las células madres involucrados en la regeneración de tejidos con aplicaciones
en la práctica clínica odontológica. Acta Odontológica Venezolana. 2008;46(3):361-9. | spa |
dc.relation.references | Hernández Ramírez P. Medicina regenerativa y células madre. Mecanismos de acción
de las células madre adultas. Revista Cubana de Hematología, Inmunología y Hemoterapia.
2009;25(1):0-0. | spa |
dc.relation.references | Hou J, Zhang H, Yuan X, Li J, Wei Y, Hu S. In vitro effects of low‐level laser irradiation
for bone marrow mesenchymal stem cells: Proliferation, growth factors secretion and myogenic
differentiation. Lasers in Surgery and Medicine: The Official Journal of the American Society
for Laser Medicine and Surgery. 2008;40(10):726-33. | spa |
dc.relation.references | Chu GY, Chen YF, Chen HY, Chan MH, Gau CS, Weng SM. Stem cell therapy on
skin: mechanisms, recent advances and drug reviewing issues. Journal of food and drug
analysis. 2018;26(1):14-20. | spa |
dc.relation.references | Mautner K, Blazuk J. Where do injectable stem cell treatments apply in treatment of
muscle, tendon, and ligament injuries? PM&R. 2015;7(4):S33-40. | spa |
dc.relation.references | de Villiers JA, Houreld NN, Abrahamse H. Influence of low intensity laser irradiation
on isolated human adipose derived stem cells over 72 hours and their differentiation potential
into smooth muscle cells using retinoic acid. Stem Cell Reviews and Reports. 2011;7:869-82. | spa |
dc.relation.references | Mata-Miranda M, Vázquez-Zapién GJ, Sánchez-Monroy V. Generalidades y
aplicaciones de las células madre. Perinatología y reproducción humana. 2013;27(3):194-9. | spa |
dc.relation.references | Dosne Pasqualini C. Células madre: Lo que sabemos. Presente y futuro. MEDICINA
(Buenos Aires). 2010;70(6):586-586. | spa |
dc.relation.references | Yang D, Yi W, Wang E, Wang M. Effects of light-emitting diode irradiation on the
osteogenesis of human umbilical cord mesenchymal stem cells in vitro. Scientific reports.
2016;6(1):1-7. | spa |
dc.relation.references | Serna-Cuéllar E, Santamaría-Solís L. Protocolo de extracción y procesamiento de
células madre adultas del tejido adiposo abdominal: coordenadas del cirujano plástico en la
investigación traslacional. Cirugía plástica ibero-latinoamericana. 2013;39:s44-50. | spa |
dc.relation.references | Jaguar G, Prado J, Nishimoto IN, Pinheiro M, de Castro Jr D, da Cruz Perez D, et al.
Low‐energy laser therapy for prevention of oral mucositis in hematopoietic stem cell
transplantation. Oral diseases. 2007;13(6):538-43. | spa |
dc.relation.references | Ferreira LS, Diniz IMA, Maranduba C, Miyagi S, Rodrigues M, Moura-Netto C, et al.
Short-term evaluation of photobiomodulation therapy on the proliferation and undifferentiated
status of dental pulp stem cells. Lasers in medical science. 2019;34:659-66. | spa |
dc.relation.references | Wason SE, Monfared S, Ionson A, Klett DE, Leslie SW. Ureteroscopy. 2020; | spa |
dc.relation.references | Bhatta AK, Keyal U, Wang X, Gellén E. A review of the mechanism of action of lasers
and photodynamic therapy for onychomycosis. Lasers in medical science. 2017;32:469-74. | spa |
dc.relation.references | Lagos A. Células madre y sistemas de clonación celular y sus posibles aplicaciones en
odontología. 2004. | spa |
dc.relation.references | AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for
enhancing the proliferation of various cultured cells. Lasers in medical science. 2012;27:237-
49. | spa |
dc.relation.references | Vale KL do, Maria DA, Picoli LC, Deana AM, Mascaro MB, Ferrari RAM, et al. The
effects of photobiomodulation delivered by light-emitting diode on stem cells from human
exfoliated deciduous teeth: a study on the relevance to pluripotent stem cell viability and
proliferation. Photomedicine and laser surgery. 2017;35(12):659-65. | spa |
dc.relation.references | Castro B. Aplicaciones clínicas de las células madre del tejido adiposo. Cirugía Plástica
Ibero-Latinoamericana. 2013;39:s29-32. | spa |
dc.relation.references | Sarveazad A, Babahajian A, Yari A, Rayner CK, Mokhtare M, Babaei-Ghazani A, et al.
Combination of laser and human adipose-derived stem cells in repair of rabbit anal sphincter
injury: a new therapeutic approach. Stem Cell Research & Therapy. 2019;10(1):1-15. | spa |
dc.relation.references | Amid R, Kadkhodazadeh M, Sarshari MG, Parhizkar A, Mojahedi M. Effects of two
protocols of low-level laser therapy on the proliferation and differentiation of human dental
pulp stem cells on sandblasted titanium discs: an in vitro study. Journal of Lasers in Medical
Sciences. 2022;13. | spa |
dc.relation.references | Yurtsever MÇ, Kiremitci A, Gümüşderelioğlu M. Dopaminergic induction of human
dental pulp stem cells by photobiomodulation: comparison of 660nm laser light and
polychromatic light in the nir. Journal of Photochemistry and Photobiology B: Biology.
2020;204:111742. | spa |
dc.relation.references | Borzabadi-Farahani A. Effect of low-level laser irradiation on proliferation of human
dental mesenchymal stem cells; a systemic review. Journal of Photochemistry and
Photobiology B: Biology. 2016;162:577-82. | spa |
dc.relation.references | Mirhosseini M, Shiari R, Motlagh PE, Farivar S. Cerebrospinal fluid and
photobiomodulation effects on neural gene expression in dental pulp stem cells. Journal of
Lasers in Medical Sciences. 2019;10(Suppl 1):S30. | spa |
dc.relation.references | Çil N, Yaka M, Ünal MS, Dodurga Y, Tan S, Seçme M, et al. Adipose derived
mesenchymal stem cell treatment in experimental asherman syndrome induced rats. Molecular
Biology Reports. 2020;47:4541-52. | spa |
dc.relation.references | Ginani F, Soares DM, de Oliveira Rocha HA, de Souza LB, Barboza CAG. Low-level
laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous
teeth. Lasers in Medical Science. 2018;33:95-102. | spa |
dc.relation.references | Tabatabaei FS, Torshabi M, Nasab MM, Khosraviani K, Khojasteh A. Effect of lowlevel
diode laser on proliferation and osteogenic differentiation of dental pulp stem cells. Laser
Physics. 2015;25(9):095602. | spa |
dc.relation.references | Reis CHB, Buchaim DV, Ortiz A de C, Fideles SOM, Dias JA, Miglino MA, et al.
Application of fibrin associated with photobiomodulation as a promising strategy to improve
regeneration in tissue engineering: A systematic review. Polymers. 2022;14(15):3150. | spa |
dc.relation.references | Guo J, Wang Q, Wai D, Zhang Q, Shi S, Le AD, et al. Visible red and infrared light
alters gene expression in human marrow stromal fibroblast cells. Orthodontics & craniofacial
research. 2015;18:50-61. | spa |
dc.relation.references | Amaroli A, Agas D, Laus F, Cuteri V, Hanna R, Sabbieti MG, et al. The effects of
photobiomodulation of 808 nm diode laser therapy at higher fluence on the in vitro osteogenic
differentiation of bone marrow stromal cells. Frontiers in physiology. 2018;9:123. | spa |
dc.relation.references | Ren C, McGrath C, Yang Y. The effectiveness of low-level diode laser therapy on
orthodontic pain management: a systematic review and meta-analysis. Lasers in medical
science. 2015;30:1881-93. | spa |
dc.relation.references | Silveira GRC, de Lima DC, Cintra LTÂ, Brigagão MRPL, Ervolino E, Fernandes LA.
Influence of Doxycycline and InGaAlP Diode Laser at 660 nm Wavelength in the Treatment
of Periodontitis Induced in Rats: In Vivo Study. Photochemistry and Photobiology.
2021;97(5):1104-15. | spa |
dc.relation.references | Sgolastra F, Severino M, Gatto R, Monaco A. Effectiveness of diode laser as adjunctive
therapy to scaling root planning in the treatment of chronic periodontitis: a meta-analysis.
Lasers in medical science. 2013;28:1393-402. | spa |
dc.relation.references | Mattar H, Bahgat M, Ezzat A, Bahaa El-Din B, Keraa K, El Taftazany I. Management
of peri-implantitis using a diode laser (810 nm) vs conventional treatment: a systematic review.
Lasers in Medical Science. 2021;36:13-23. | spa |
dc.relation.references | Sfasciotti GL, Zara F, Vozza I, Carocci V, Ierardo G, Polimeni A. Diode versus CO2
laser therapy in the treatment of high labial frenulum attachment: a pilot randomized, doubleblinded
clinical trial. International Journal of Environmental Research and Public Health.
2020;17(21):7708. | spa |
dc.relation.references | Karataş E, Arslan H, Topçuoğlu HS, Yılmaz CB, Yeter KY, Ayrancı LB. The effect of
diode laser with different parameters on root fracture during irrigation procedure. Artificial
Organs. 2016;40(6):604-9. | spa |
dc.relation.references | Gadzhula NG, Shinkaruk-Dykovytska MM, Cherepakha OL, Goray MA, Horlenko IM.
EFFICIENCY OF USING THE DIODE LASER IN THE TREATMENT OF PERIODONTAL
INFLAMMATORY DISEASES 841. Wiadomosci Lekarskie. 2020;73(5). | spa |
dc.relation.references | Pourshahidi S, Ebrahimi H, Mansourian A, Mousavi Y, Kharazifard M. Comparison of
Er, Cr: YSGG and diode laser effects on dentin hypersensitivity: a split-mouth randomized
clinical trial. Clinical oral investigations. 2019;23:4051-8. | spa |
dc.relation.references | Badawi AM, Osman MA. Fractional erbium-doped yttrium aluminum garnet laserassisted
drug delivery of hydroquinone in the treatment of melasma. Clinical, cosmetic and
investigational dermatology. 2018;13-20. | spa |
dc.relation.references | Abdelwahab M, Salah M, Samy N, Rabie A, Farrag A. Effect of topical 5-fluorouracil
alone versus its combination with erbium: YAG (2940 nm) laser in treatment of vitiligo.
Clinical, Cosmetic and Investigational Dermatology. 2020;77-85. | spa |
dc.relation.references | Cerrati EW, O TM, Chung H, Waner M. Diode laser for the treatment of telangiectasias
following hemangioma involution. Otolaryngology–Head and Neck Surgery.
2015;152(2):239-43. | spa |
dc.relation.references | Koren A, Isman G, Friedman O, Salameh F, Niv R, Shehadeh W, et al. Evaluation of
subject response following treatment for pigmentation or wrinkles using a diode laser. Journal
of cosmetic dermatology. 2020;19(6):1371-6. | spa |
dc.relation.references | Klein A, Bäumler W, Koller M, Shafirstein G, Kohl EA, Landthaler M, et al.
Indocyanine green‐augmented diode laser therapy of telangiectatic leg veins: A randomized
controlled proof‐of‐concept trial. Lasers in surgery and medicine. 2012;44(5):369-76. | spa |
dc.relation.references | Sandhu S, Damji KF. Laser management of glaucoma in exfoliation syndrome. Journal
of Glaucoma. 2018;27:S91-4. | spa |
dc.relation.references | Ordahan B, Karahan A yavuz. Role of low-level laser therapy added to facial expression
exercises in patients with idiopathic facial (Bell’s) palsy. Lasers in medical science.
2017;32(4):931-6. | spa |
dc.relation.references | Jiang C, Klassen H, Zhang X, Young M. Laser injury promotes migration and
integration of retinal progenitor cells into host retina. Molecular vision. 2010;16:983. | spa |
dc.relation.references | Tuby H, Maltz L, Oron U. Induction of autologous mesenchymal stem cells in the bone
marrow by low‐level laser therapy has profound beneficial effects on the infarcted rat heart.
Lasers in surgery and medicine. 2011;43(5):401-9. | spa |
dc.relation.references | Polese L, La Raja C, Fasolato S, Frigo AC, Angeli P, Merigliano S. Endoscopic diode
laser therapy for gastric hyperplastic polyps in cirrhotic patients. Lasers in medical science.
2021;36:975-9. | spa |
dc.relation.references | Bajaj Y, Pegg D, Gunasekaran S, Knight L. Diode laser for paediatric airway
procedures: a useful tool. International journal of clinical practice. 2010;64(1):51-4. | spa |
dc.relation.references | Fischer M, Horn IS, Quante M, Merkenschlager A, Schnoor J, Kaisers UX, et al.
Respiratory complications after diode-laser-assisted tonsillotomy. European Archives of Oto-
Rhino-Laryngology. 2014;271:2317-24. | spa |
dc.relation.references | Pinto C, Queirós T, Ferreira C. Transcanalicular Diode Laser-Assisted
Dacryocystorhinostomy–Success Rates and Related Factors During 3 Years of Follow-Up. En
Taylor & Francis; 2021. p. 501-6. | spa |
dc.relation.references | Dogan R, Meric A, Ozsütcü M, Yenigun A. Diode laser-assisted endoscopic
dacryocystorhinostomy: a comparison of three different combinations of adjunctive
procedures. European Archives of Oto-Rhino-Laryngology. 2013;270:2255-61. | spa |
dc.relation.references | Dawood MS, Salman SD. Low level diode laser accelerates wound healing. Lasers in
medical science. 2013;28:941-5. | spa |
dc.relation.references | Kobayashi T, Seki N, Song YH, Dejima T. GreenLight HPS laser 120 W vs diode laser
300 W vaporization of the prostate for the treatment of benign prostatic hyperplasia in Japanese
patients: A prospective, single‐center, randomized clinical trial. LUTS: Lower Urinary Tract
Symptoms. 2021;13(1):31-7. | spa |
dc.relation.references | Gold MH, Biron J, Sensing W. Evaluation of a new diode laser for the treatment of
lower extremity leg veins. Journal of Cosmetic Dermatology. 2019;18(3):773-7. | spa |
dc.relation.references | Oron A, Efrati S, Doenyas-Barak K, Tuby H, Maltz L, Oron U. Photobiomodulation
therapy to autologous bone marrow in humans significantly increases the concentration of
circulating stem cells and macrophages: a pilot study. Photobiomodulation, Photomedicine,
and Laser Surgery. 2022;40(3):178-82. | spa |
dc.relation.references | Wollina U, Goldman A. The dual 980‐nm and 1470‐nm diode laser for vascular lesions.
Dermatologic Therapy. 2020;33(4):e13558. | spa |
dc.relation.references | Vila-Arteaga J, Stirbu O, Suriano MM, Vila-Mascarell E. A new technique for diode
laser cyclophotocoagulation. Journal of Glaucoma. 2014;23(1):35-6. | spa |
dc.relation.references | Albahlal A, Al Dhibi H, Al Shahwan S, Khandekar R, Edward DP. Sympathetic
ophthalmia following diode laser cyclophotocoagulation. British Journal of Ophthalmology.
2014;98(8):1101-6. | spa |
dc.relation.references | Serrage HJ, Joanisse S, Cooper PR, Palin W, Hadis M, Darch O, et al. Differential
responses of myoblasts and myotubes to photobiomodulation are associated with mitochondrial
number. Journal of biophotonics. 2019;12(6):e201800411. | spa |
dc.relation.references | Sivolella S, Sibillin M, Lupi A, Zanette G, Giraudo C. Diode laser for the treatment of
a high flow lip vascular malformation. Minerva Dental and Oral Science. 2021;71(4):248-53. | spa |
dc.relation.references | Gong J, Park H, Lee J, Seo H, Lee S. Effect of photodynamic therapy on multispecies
biofilms, including Streptococcus mutans, Lactobacillus casei, and Candida albicans.
Photobiomodulation, Photomedicine, and Laser Surgery. 2019;37(5):282-7. | spa |
dc.relation.references | Yebes A, Toribio C, Álvarez-Maestro M, Cansino R, Aguilera A, Martínez-Piñeiro L.
Laser in prostate cancer. Applicability. Archivos Espanoles de Urologia. 2020;73(8):724-34. | spa |
dc.relation.references | Gao L, Xu W, Li T, Chen J, Shao A, Yan F, et al. Stem cell therapy: a promising
therapeutic method for intracerebral hemorrhage. Cell transplantation. 2018;27(12):1809-24. | spa |
dc.relation.references | Zhou Y, Shao A, Xu W, Wu H, Deng Y. Advance of stem cell treatment for traumatic
brain injury. Frontiers in cellular neuroscience. 2019;13:301. | spa |
dc.relation.references | Stancioiu F, Papadakis GZ, Lazopoulos G, Spandidos DA, Tsatsakis A, Floroiu M,
et al. CD271+ stem cell treatment of patients with chronic stroke. Experimental and
Therapeutic Medicine. 2020;20(3):2055-62. | spa |
dc.relation.references | Shimamura N, Mtsuda N, Ktayama K, Kakuta K, Katagai T, Naraoka M, et al. Stem
cell therapies for intracerebral hemorrhages. Current Drug Delivery. 2017;14(6):758-65. | spa |
dc.relation.references | Duncan T, Valenzuela M. Alzheimer’s disease, dementia, and stem cell therapy. Stem
cell research & therapy. 2017;8:1-9. | spa |
dc.relation.references | Liu Z, Cheung HH. Stem cell-based therapies for Parkinson disease. International
journal of molecular sciences. 2020;21(21):8060. | spa |
dc.relation.references | Grochowski C, Radzikowska E, Maciejewski R. Neural stem cell therapy—Brief
review. Clinical Neurology and Neurosurgery. 2018;173:8-14. | spa |
dc.relation.references | Yamazaki K, Kawabori M, Seki T, Houkin K. Clinical trials of stem cell treatment for
spinal cord injury. International Journal of Molecular Sciences. 2020;21(11):3994. | spa |
dc.relation.references | Shah K. Stem cell-based therapies for tumors in the brain: Are we there yet? Neurooncology.
2016;18(8):1066-78. | spa |
dc.relation.references | Veneruso V, Rossi F, Villella A, Bena A, Forloni G, Veglianese P. Stem cell paracrine
effect and delivery strategies for spinal cord injury regeneration. Journal of Controlled Release.
2019;300:141-53. | spa |
dc.relation.references | Prosper F, Herreros J, Alegria E. Stem cells to regenerate cardiac tissue in heart failure.
2003; | spa |
dc.relation.references | Müller P, Lemcke H, David R. Stem cell therapy in heart diseases–cell types,
mechanisms and improvement strategies. Cellular Physiology and Biochemistry.
2018;48(6):2607-55. | spa |
dc.relation.references | Goradel NH, Hour FG, Negahdari B, Malekshahi ZV, Hashemzehi M, Masoudifar A,
et al. Stem cell therapy: a new therapeutic option for cardiovascular diseases. Journal of cellular
biochemistry. 2018;119(1):95-104. | spa |
dc.relation.references | Sano T, Ishigami S, Ito T, Sano S. Stem cell therapy in heart disease: limitations and
future possibilities. Acta Medica Okayama. 2020;74(3):185-90. | spa |
dc.relation.references | Trainini JC, Cichero D, Bustos N. Cardioimplante celular autólogo. Rev Argent
Cardiol. 2002;70:137-42. | spa |
dc.relation.references | Pan G, Mu Y, Hou L, Liu J. Examining the therapeutic potential of various stem cell
sources for differentiation into insulin-producing cells to treat diabetes. En Elsevier; 2019. p.
47-53. | spa |
dc.relation.references | Gaddam S, Periasamy R, Gangaraju R. Adult stem cell therapeutics in diabetic
retinopathy. International Journal of Molecular Sciences. 2019;20(19):4876. | spa |
dc.relation.references | Fernández A, Moreno J, Prósper F, García M, Echeveste J. Regeneración de la
superficie ocular: stem cells/células madre y técnicas reconstructivas. En SciELO Espana;
2008. p. 53-69. | spa |
dc.relation.references | Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S.
Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem
cell research & therapy. 2019;10(1):1-20. | spa |
dc.relation.references | Mead B, Berry M, Logan A, Scott RA, Leadbeater W, Scheven BA. Stem cell treatment
of degenerative eye disease. Stem cell research. 2015;14(3):243-57. | spa |
dc.relation.references | Zhu T, Li Y, Guo Y, Zhu C. The development of stem cell-based treatment for liver
failure. Current Stem Cell Research & Therapy. 2017;12(7):554-63. | spa |
dc.relation.references | Do TK, Nguyen VH, Nguyen TN, Nguyen VL, Pham DM, Nguyen TN, et al. Efficient
Isolation and Long-term Red Fluorescent Nanodia-mond Labeling of Umbilical Cord
Mesenchymal Stem Cells for the Effective Differentiation into Hepatocyte-like Cells. Brazilian
Archives of Biology and Technology. 2020;63. | spa |
dc.relation.references | Shao A, Tu S, Lu J, Zhang J. Crosstalk between stem cell and spinal cord injury:
pathophysiology and treatment strategies. Stem cell research & therapy. 2019;10:1-13. | spa |
dc.relation.references | Vij SC, Sabanegh Jr E, Agarwal A. Biological therapy for non-obstructive azoospermia.
Expert opinion on biological therapy. 2018;18(1):19-23. | spa |
dc.relation.references | Mirza S, Sadiq M, Alqahtani A, Al-Saleh S, Alqutub M, Almubarak A, et al. The effect
of 805 nm near-infrared photobiomodulation on proliferation and differentiation of bone
marrow stem cells in murine rats. European Review for Medical and Pharmacological Sciences.
2021;25(20):6319-25. | spa |
dc.relation.references | Liao X, Li S, Xie G, Xie S, Xiao L, Song J, et al. Preconditioning With Low‐Level
Laser Irradiation Enhances the Therapeutic Potential of Human Adipose‐derived Stem Cells in
a Mouse Model of Photoaged Skin. Photochemistry and photobiology. 2018;94(4):780-90. | spa |
dc.relation.references | Winter R, Dungel P, Reischies FMJ, Rohringer S, Slezak P, Smolle C, et al.
Photobiomodulation (PBM) promotes angiogenesis in-vitro and in chick embryo
chorioallantoic membrane model. Scientific Reports. 2018;8(1):1-9. | spa |
dc.relation.references | Mostafavinia A, Dehdehi L, Ghoreishi SK, Hajihossainlou B, Bayat M. Effect of in
vivo low-level laser therapy on bone marrow-derived mesenchymal stem cells in ovariectomyinduced
osteoporosis of rats. Journal of Photochemistry and Photobiology B: Biology.
2017;175:29-36. | spa |
dc.relation.references | Park IS, Mondal A, Chung PS, Ahn JC. Vascular regeneration effect of adipose-derived
stem cells with light-emitting diode phototherapy in ischemic tissue. Lasers in medical science.
2015;30:533-41. | spa |
dc.relation.references | Zhang H, Hou J, Shen Y, Wang W, Wei Y, Hu S. Low level laser irradiation
precondition to create friendly milieu of infarcted myocardium and enhance early survival of
transplanted bone marrow cells. Journal of Cellular and Molecular Medicine. 2010;14(7):1975-
87. | spa |
dc.relation.references | Gutiérrez D, Rouabhia M, Ortiz J, Gaviria D, Alfonso C, Muñoz A, et al. Low-level
laser irradiation promotes proliferation and differentiation on apical papilla stem cells. Journal
of Lasers in Medical Sciences. 2021;12. | spa |
dc.relation.references | Silva GBL, Mendonça EF, Bariani C, Antunes HS, Silva MAG. The prevention of
induced oral mucositis with low-level laser therapy in bone marrow transplantation patients: a
randomized clinical trial. Photomedicine and laser surgery. 2011;29(1):27-31. | spa |
dc.relation.references | Kim HK, Kim JH, Abbas AA, Kim DO, Park SJ, Chung JY, et al. Red light of 647 nm
enhances osteogenic differentiation in mesenchymal stem cells. Lasers in medical science.
2009;24:214-22. | spa |
dc.relation.references | Cayan T, Hasanoğlu Erbaşar GN, Akca G, Kahraman S. Comparative evaluation of
diode laser and scalpel surgery in the treatment of inflammatory fibrous hyperplasia: A splitmouth
study. Photobiomodulation, photomedicine, and laser surgery. 2019;37(2):91-8. | spa |
dc.relation.references | Xiao B, Zou Z, Bhandari J, Zhang Y, Yan G. Exposure to diode laser (810nm) affects
the bacterial adherence and biofilm formation in a E. faecalis biofilm model. Photodiagnosis
and Photodynamic Therapy. 2020;31:101772. | spa |
dc.relation.references | Kazakova RT, Tomov GT, Kissov CK, Vlahova AP, Zlatev SC, Bachurska SY.
Histological gingival assessment after conventional and laser gingivectomy. Folia Med
(Plovdiv). 2018;60(4):610-6. | spa |
dc.relation.references | Bruce C. Human Embryology and Developmental Biology. Elsevier Spain. 2020 | spa |
dc.relation.references | https://www.researchgate.net/publication/266675281_Intravascular_laser_therapy_IVL_i
n_pre-hypertension_and_hypertension_patients | spa |
dc.relation.references | https://pubmed.ncbi.nlm.nih.gov/23358875/ | spa |
dc.relation.references | http://www.scielo.edu.uy/scielo.php?pid=S1688-
93392021000201207&script=sci_arttext | spa |
dc.relation.references | Keeney M, Chin-Yee I, Weir K, Popma J, Nayar R Sutherland D. Single platform flow
cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. International Society
of Hematotherapy and Graft Engineering. 1998;34:61-70 | spa |
dc.relation.references | Jara SE, Jensen GE. Recuento de Células CD34 + por citometría de flujo. Revista del
Colegio de microbiólogos de Costa Rica 2018;24 | spa |
dc.relation.references | Suarez de Lezo J, Torres A, Herrera I, Pan M, Romero M, Pavlovic D, Segura J, Ojeda S,
Sánchez J, López F, Medina A. Efectos de la movilización de células madre mediante el uso
de factor estimulante de colonias granulocíticas en pacientes con infarto agudo de miocardio
anterior revascularizado percutáneamente. Revista española de cardiología. 2005; 58(3): 253-
261 | spa |
dc.relation.references | Ávila L, Ospino B, Franco C, Arroyo F, Ávila J, Pareja L, Aristizábal F. Efectos del uso
del factor estimulante de colonias granulocíticas en la obtención de células madre en un grupo
de pacientes con enfermedad arterial oclusiva crónica. Revista Colombiana de Ciencias
Químico Farmacéuticos 2010; 39(2) | spa |
dc.relation.references | https://pubmed.ncbi.nlm.nih.gov/37874511/ UAN | spa |
dc.relation.references | Gaviria J, Herreros J, Luquin R, Moreno J, Prósper F, Rábago G, Redondo P, Robles E.
Trasplante celular y terapia regenerativa con células madre. Anales del sistema sanitario de
Navarra. 2006 ; 29:219-234 | spa |
dc.relation.references | Modificación láser de la sangre in vitro e in vivo en pacientes con enfermedad de
Parkinson
TV Vitreschak 1, V.V.Mijailov , MA Piradov , VV Poleshchuk , SL Stvolinski , AA Boldyrev.
https://pubmed.ncbi.nlm.nih.gov/12910278/ | spa |
dc.relation.references | Esteve RM. Tejido adiposo: heterogeneidad celular y diversidad funcional.
Endocrinología y Nutrición Elsevier España. 2014. 61(2) 100-112 | spa |
dc.relation.references | Zumbado G, Rodríguez M, Rojas X, Rojas C, Herrera H. Recolección de células madre
en sangre periférica mediante aféresis de grandes volúmenes. Acta Médica Costarricense. 2014.
6 (2) | spa |
dc.relation.references | Grupo Español de Trasplante Hematopoyético y Terapia Celular. Aféresis de células
progenitoras hematopoyéticas (CPH). GETH.España. 2019 | spa |
dc.relation.references | Beléndez C, Cela E, Galardón P. Punción - aspiración de médula ósea. Anales de Pediatría
Continuada España. 2007. 5(1):52-4 | spa |
dc.relation.references | EmCyte Corporation. Técnica quirúrgica Sistema de médula ósea. Exatage biológicos.
España. 2012 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.subject.proposal | Células madre | spa |
dc.subject.proposal | Láser | spa |
dc.subject.proposal | Diodo | spa |
dc.subject.proposal | CO2 | spa |
dc.subject.proposal | Regeneración celular | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |