dc.contributor.advisor | Sanchez Leal, Ligia Consuelo | |
dc.contributor.author | Sanabria Galindo, Angie Paola | |
dc.date.accessioned | 2024-05-20T21:47:05Z | |
dc.date.available | 2024-05-20T21:47:05Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://repositorio.universidadmayor.edu.co/handle/unicolmayor/6887 | |
dc.description.abstract | El sonido es un factor físico en el cual los seres vivos nos encontramos inmersos, es por esto que comprender la capacidad de las diferentes frecuencias sonoras para generar mecanismos estimulantes brinda una oportunidad innovadora para los diversos procesos industriales en los que se ven implicados microorganismos. El ultrasonido ha sido por varios años usado en diversas áreas con fines variados siendo tema de múltiples investigaciones evidenciando un efecto positivo en la estimulación de levaduras y microalgas, sin embargo, la música ubicada dentro de la frecuencia sonora audible representa una herramienta prometedora para optimizar bioprocesos con fines de producción de biomasa. La búsqueda de procesos alternativos a los tradicionales en cuanto a la fermentación, biorremediación, estimulación de crecimiento y producción de metabolitos que respondan a las necesidades y a la situación actual es necesario. De esta manera, el objetivo de la presente monografía es hacer un recorrido bibliográfico para llegar a establecer la relación de la música como factor estimulante en la producción de biomasa frente a microorganismos como bacterias, algas y levaduras. | spa |
dc.description.tableofcontents | TABLA DE CONTENIDO
ÍNDICE DE FIGURAS 7
ÍNDICE DE TABLAS 7
RESUMEN8
INTRODUCCIÓN9
OBJETIVOS11
1. ANTECEDENTES12
2. MARCO REFERENCIAL17
2.1Biomasa microbiana17
2.2 Comunicación microbiana17
2.3 Definición de sonido 19
2.3.1 Clasificación del sonido19
2.4 El Ultrasonido19
2.4.1 Efectos moleculares del ultrasonido en las células20
2.4.2 Efecto del ultrasonido en levaduras y microalgas21
2.5 Producción de biomasa por estimulación sonora audible22
2.6 Música para las células 23
2.7 Música inspirada en la ecología microbiana24
2.8 Sonido audible y su relación con las bacterias 24
2.9 Canales mecanosensibles25
3. DISEÑO METODOLÓGICO26
3.1 Tipo de investigación26
3.2 Universo, población y muestra26
3.3 Procedimiento26
3.3.1 Búsqueda y revisión de información existente26
3.3.2 Clasificación de la información27 6
4. RESULTADOS Y DISCUSIÓN 28
4.1 Información obtenida 28
4.2 Música y producción de biomasa en bacterias29
4.3 Música y producción de biomasa en microalgas32
4.4 Música y producción de biomasa en levaduras33
4.5 La música y su efecto sobre moléculas biológicas34
5. CONCLUSIONES40
6. REFERENCIAS BIBLIOGRÁFICAS42 | spa |
dc.format.extent | 48p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.title | La música como factor estimulante en la producción de biomasa microbiana | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.contributor.corporatename | Universidad Colegio Mayor de Cundinamarca | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá D.C | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | Booth IR, Edwards MD, Black S, Schumann U, Miller S. Mechanosensitive channels in bacteria: signs of closure? Nat Rev Microbiol [Internet]. 2007 [cited 22 Jul 2023];5(6):431–40. Available in: http://www.columbia.edu/cu/biology/dept/seminarPDFfiles/NRMicro%20Final%20Pdf-Booth.pdf | spa |
dc.relation.references | Rokhina EV, Lens P, Virkutyte J. Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol [Internet]. 2009 [cited 15 Jun 2023];27(5):298–306. Available in: https://www.sciencedirect.com/science/article/pii/S0167779909000493 | spa |
dc.relation.references | Shaobin G, Wu Y, Li K, Li S, Ma S, Wang Q, et al. A pilot study of the effect of audible sound on the growth of Escherichia coli. Colloids Surf B Biointerfaces [Internet]. 2010 [cited 16 Jun 2023];78(2):367–71. Available in: https://www.sciencedirect.com/science/article/pii/S0927776510001165 | spa |
dc.relation.references | Koelsch S, Offermanns K, Franzke P. Music in the treatment of affective disorders: An exploratory investigation of a new method for music-therapeutic research. Music Percept [Internet]. 2010 [cited 22 Jul 2023];27(4):307–16. Available in: http://dx.doi.org/10.1525/mp.2010.27.4.307 | spa |
dc.relation.references | Suppajee P, Monthon T. Effects of Music on Microbial Substrate Utilization of Aerobic Bacteria from Municipal Wastewater Treatment Plant PART II: Comparative effects of Musical Characteristics. Journal of Research in Engineering and Technology (Thailand) [Internet]. 2010 [cited 23 Jul 2023];7(2):41–8. Available in: https://kukr.lib.ku.ac.th/kukr_es/BKN/search_detail/result/198410 | spa |
dc.relation.references | Reguera G. When microbial conversations get physical. Trends Microbiol [Internet]. 2011 [cited 18 Jun 2023];19(3):105–13. Available in: http://dx.doi.org/10.1016/j.tim.2010.12.007 | spa |
dc.relation.references | Aggio RBM, Obolonkin V, Villas-Bôas SG. Sonic vibration affects the metabolism of yeast cells growing in liquid culture: a metabolomic study. Metabolomics [Internet]. 2012 [cited 18 Jun 2023];8(4):670–8. Available in: http://dx.doi.org/10.1007/s11306-011-0360-x | spa |
dc.relation.references | Rutherford ST, Bassler BL. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med [Internet]. 2012 [cited 20 Jun 2023];2(11): a012427–a012427. Available in: http://dx.doi.org/10.1101/cshperspect.a012427 | spa |
dc.relation.references | Larsen P, Gilbert J. Microbial bebop: creating music from complex dynamics in microbial ecology. PLoS One [Internet]. 2013 [cited 28 Jul 2023];8(3):e58119. Available in: http://dx.doi.org/10.1371/journal.pone.0058119 | spa |
dc.relation.references | Jiang S, Rao H, Chen Z, Liang M, Li L. Effects of Sonic Waves at Different Frequencies on Propagation of Chlorella pyrenoidosa. Agricultural Science & Technology [Internet].2012[cited 20 Jun 2023];13(10):2197-2201. Available in:https://www.proquest.com/docview/1357067123/30E5E377D1554A42PQ/1?accountid=50438# | spa |
dc.relation.references | Gu S-B, Yang B, Wu Y, Li S-C, Liu W, Duan X-F, et al. Growth and physiological characteristics of E. coli in response to the exposure of sound field. Pak J Biol Sci [Internet]. 2013 [cited 17 Jun 2023];16(18):969–75. Available in: http://dx.doi.org/10.3923/pjbs.2013.969.975 | spa |
dc.relation.references | Ward R, Pliotas C, Branigan E, Hacker C, Rasmussen A, Hagelueken G, et al. Probing the structure of the mechanosensitive channel of small conductance in lipid bilayers with pulsed electron-electron double resonance. Biophys J [Internet]. 2014 [cited 28 Jul 2023];106(4):834–42. Available in: http://dx.doi.org/10.1016/j.bpj.2014.01.008 | spa |
dc.relation.references | Sarvaiya N, Kothari V. Effect of audible sound in form of music on microbial growth and production of certain important metabolites. Microbiology [Internet]. 2015 [cited18 Jun 2023];84(2):227–35. Available in: http://dx.doi.org/10.1134/s0026261715020125 | spa |
dc.relation.references | Gu S, Zhang Y, Wu Y. Effects of sound exposure on the growth and intracellular macromolecular synthesis of E. coli k-12. PeerJ [Internet]. 2016 [cited 18 Jun 2023];4(e1920): e1920. Available in: http://dx.doi.org/10.7717/peerj.1920 | spa |
dc.relation.references | Shah A, Raval A, Kothari V. Sound stimulation can influence microbial growth and production of certain key metabolites. J Microbiol Biotechnol Food Sci [Internet]. 2016 [cited 6 Jun 2023];5(4):330–4. Available in: http://dx.doi.org/10.15414/jmbfs.2016.5.4.330-334 | spa |
dc.relation.references | Liu SL, Wu WJ, Yung PT. Effect of sonic stimulation on Bacillus endospore germination. FEMS Microbiol Lett [Internet]. 2016 [cited 20 Jun 2023];363(1): fnv217. Available in: http://dx.doi.org/10.1093/femsle/fnv217 | spa |
dc.relation.references | Murphy MF, Edwards T, Hobbs G, Shepherd J, Bezombes F. Acoustic vibration can enhance bacterial biofilm formation. J Biosci Bioeng [Internet]. 2016 [cited 16 Jul 2023];122(6):765–70. Available in: http://dx.doi.org/10.1016/j.jbiosc.2016.05.010 | spa |
dc.relation.references | Cai W, Dunford NT, Wang N, Zhu S, He H. Audible sound treatment of the microalgae Picochlorum oklahomensis for enhancing biomass productivity. Bioresour Technol [Internet]. 2016 [cited 21 Jun 2023]; 202:226–30. Available in: http://dx.doi.org/10.1016/j.biortech.2015.12.019 | spa |
dc.relation.references | Kothari V, Patel P, Joshi C, Mishra B, Dubey S, Mehta M. Quorum sensing modulatory effect of sound stimulation on Serratia marcescens and Pseudomonas aeruginosa [Internet]. bioRxiv. 2016 [cited 20 Jul 2023]. Available in: http://dx.doi.org/10.1101/072850 | spa |
dc.relation.references | Christwardana M, Hadiyanto H. The effects of audible sound for enhancing the growth rate of microalgae Haematococcus pluvialis in vegetative stage. Hayati [Internet]. 2017 [cited 18 Jun 2023];24(3):149–55. Available in: http://dx.doi.org/10.1016/j.hjb.2017.08.009 | spa |
dc.relation.references | Kothari V. Audible sound in form of music can influence microbial growth, metabolism and antibiotic susceptibility. J Appl Biotechnol Bioeng [Internet]. 2017 [cited 18 Jun 2023];2(6). Available in: http://dx.doi.org/10.15406/jabb.2017.02.00048 | spa |
dc.relation.references | Kothari V, Joshi C, Patel P, Mehta M, Dubey S, Mishra B, et al. Influence of a Mono-Frequency Sound on Bacteria can be a Function of the Sound-Level. Indian J Sci Technol [Internet]. 2018 [cited 20 Jun 2023];11(4):1–9. Available in: http://dx.doi.org/10.17485/ijst/2018/v11i4/111366 | spa |
dc.relation.references | Algieri C, Guarnaccia C, Barone V, Gullo MR, Donato L. Effects of music playing on biological molecules. MATEC Web Conf [Internet]. 2018 [cited 16 Jun 2023]; 210:05006. Available in: https://www.matec-conferences.org/articles/matecconf/abs/2018/69/matecconf_cscc2018_05006/matecconf_cscc2018_05006.html | spa |
dc.relation.references | Banerjee S, Goswami A, Datta A, Pyne A, Nikhat A, Ghosh B. Effect of different sound frequencies on the growth and antibiotic susceptibility of Escherichia
coli. Int J Curr Microbiol Appl Sci [Internet]. 2018 [cited 20 Jun 2023];7(03):1931–9. Available in: http://dx.doi.org/10.20546/ijcmas.2018.703.229 | spa |
dc.relation.references | Chandra TS, Lekha VS, Krishna TM. Effect of music on growth and pigment production of Brevibacterium sp. Int. J. Pharm. Chem. Biol. Sci. 2018 [cited 20 Jun 2023]; 8:157–160. Available in: https://www.researchgate.net/profile/Sharath-Chandra-4/publication/332413421_EFFECT_OF_MUSIC_ON_GROWTH_AND_PIGMENT_PRODUCTION_OF_BREVIBACTERIUM_SPECIES/links/5cb3ff9e299bf12097665962/EFFECT-OF-MUSIC-ON-GROWTH-AND-PIGMENT-PRODUCTION-OF-BREVIBACTERIUM-SPECIES.pdf | spa |
dc.relation.references | Liu W-S, Yang C-Y, Fang TJ. Strategic ultrasound-induced stress response of lactic acid bacteria on enhancement of β-glucosidase activity for bioconversion of isoflavones in soymilk. J Microbiol Methods [Internet]. 2018 [cited 28 Jul 2023];148:145–50. Available in: http://dx.doi.org/10.1016/j.mimet.2018.04.006 | spa |
dc.relation.references | Pagnossa JP, Rocchetti G, Ribeiro AC, Piccoli RH, Lucini L. Ultrasound: beneficial biotechnological aspects on microorganisms-mediated processes. Curr Opin Food Sci [Internet]. 2020 [cited 20 Jun 2023]; 31:24–30. Available in: http://dx.doi.org/10.1016/j.cofs.2019.10.006 | spa |
dc.relation.references | Speranza B, Campaniello D, Altieri C, Sinigaglia M, Bevilacqua A, Corbo MR. Ultrasonic modulation of the technological and functional properties of yeast strains. Microorganisms [Internet]. 2020 [cited 25 Jul 2023];8(9):1399. Available in: http://dx.doi.org/10.3390/microorganisms8091399 | spa |
dc.relation.references | Santoso, Y. A., Tambunan, R. M. N., Soekirno, S., Nasruddin, N., & Prihantini, N. B. Cultivation of synechococcus HS-9 (cyanobacteria) isolated from Rawa Danau Banten hot spring using audible sound (music) as a strategy for improving photobioreactor [Internet]. In AIP Conference Proceedings (Vol. 2255, No. 1). AIP Publishing. 2020 [cited 16 Jun 2023]. Available in: https://pubs.aip.org/aip/acp/article-abstract/2255/1/030013/1026516/Cultivation-of-Synechococcus-HS-9-cyanobacteria | spa |
dc.relation.references | Santoso YA, Tambunan RMN, Soekirno S, Nasruddin N, Prihantini NB. Sound wave exposure as a strategy for improving the tubular photobioreactor for cultivating Synechococcus HS-9 as biofuel feedstock under different photoperiods. IJTech [Internet]. 2020 [cited 16 Jun 2023];11(7):1406. Available in: https://ijtech.eng.ui.ac.id/article/view/4459 | spa |
dc.relation.references | Frongia F, Forti L, Arru L. Sound perception and its effects in plants and algae. Plant Signal Behav [Internet]. 2020 [cited 21 Jun 2023];15(12):1828674. Available in: http://dx.doi.org/10.1080/15592324.2020.1828674 | spa |
dc.relation.references | Munar A, Sembiring M, Tantawi AR, Sabrina T. Effect of sound treatment on phosphate solubilizing microbial activity. IOP Conf Ser Earth Environ Sci [Internet]. 2020 [cited 4 Jul 2023];454(1):012145. Available in: http://dx.doi.org/10.1088/1755-1315/454/1/012145 | spa |
dc.relation.references | Robinson JM, Cameron R, Parker B. The effects of anthropogenic sound and artificial light exposure on microbiomes: Ecological and public health implications. Front Ecol Evol [Internet]. 2021 [cited 27 Jul 2023];9. Available in:http://dx.doi.org/10.3389/fevo.2021.662588 | spa |
dc.relation.references | Keramati A, Pajoum Shariati F, Tavakoli O, Akbari Z, Rezaei M. The effect of audible sound frequency on the growth and beta-carotene production of Dunaliella salina. S Afr J Bot [Internet]. 2021 [cited 28 Jul 2023]; 141:373–82. Available in: http://dx.doi.org/10.1016/j.sajb.2021.05.026 | spa |
dc.relation.references | Adadi P, Harris A, Bremer P, Silcock P, Ganley ARD, Jeffs AG, et al. The effect of sound frequency and intensity on yeast growth, fermentation performance and volatile composition of beer. Molecules [Internet]. 2021 [cited 17 Jun 2023];26(23):7239. Available in: http://dx.doi.org/10.3390/molecules26237239 | spa |
dc.relation.references | Harris A, Lindsay MA, Ganley ARD, Jeffs A, Villas-Boas SG. Sound stimulation can affect Saccharomyces cerevisiae growth and production of volatile metabolites
in liquid medium. Metabolites [Internet]. 2021 [cited 17 de Jun 2023];11(9):605. Available in: http://dx.doi.org/10.3390/metabo11090605 | spa |
dc.relation.references | Ku H-N, Lin W-F, Peng H-L, Yew T-R. In-situ monitoring the effect of acoustic vibration in the form of music on the motility of Escherichia coli. Appl Acoust [Internet]. 2021 [cited 18 Jun 2023];172(107620):107620. Available in: http://dx.doi.org/10.1016/j.apacoust.2020.107620 | spa |
dc.relation.references | Jun Vergara S. ¿Qué es el Sonido?, sus cualidades - Artículos Marcatto [Internet]. The House Records. 2021 [citado 23 de Julio 2023]. Disponible en: https://thehouserecords.com/que-es-el-sonido-sus-cualidades/ | spa |
dc.relation.references | Han S-I, Jeon MS, Ahn J-W, Choi Y-E. Establishment of ultrasonic stimulation to enhance growth of Haematococcus lacustris. Bioresour Technol [Internet]. 2022 [cited 18 Jun 2023];360(127525):127525. Available in: http://dx.doi.org/10.1016/j.biortech.2022.127525 | spa |
dc.relation.references | Kwak D, Combriat T, Wang C, Scholz H, Danielsen A, Jensenius AR. Music for cells? A systematic review of studies investigating the effects of audible sound played through speaker-based systems on cell cultures. Music Sci [Internet]. 2022 [cited 16 Jun 2023; 5:205920432210809. Available in: http://dx.doi.org/10.1177/20592043221080965 | spa |
dc.relation.references | Dinesh Kumar S, Nanthini Devi K, Krishnaveni N, Santhanam P, Perumal P, Aravinth A. Stimulator matters: an overview on stimulants used in microalgal culture for the growth and fatty acid enhancement. Biomass Convers Biorefin [Internet]. 2022 [cited 18 Jun 2023]; Available in: http://dx.doi.org/10.1007/s13399-022-03033-8 | spa |
dc.relation.references | Jauset JA. Jordi A. Jauset, divulgador científico [Internet]. Jordijauset.es. [citado 21 de Julio de 2023]. Disponible en: https://www.jordijauset.es/las-vibraciones-acusticas-afectan-a-los-cultivos-celulares/ | spa |
dc.relation.references | Benitez R, Harris A, Mansfield E, Silcock P, Eyres G, Villas-Bôas SG, et al. Direct liquid transmission of sound has little impact on fermentation performance in
Saccharomyces cerevisiae. PLoS One [Internet]. 2023 [cited 4 Jul 2023];18(2): e0281762. Available in: http://dx.doi.org/10.1371/journal.pone.0281762 | spa |
dc.relation.references | Park YH, Park J, Choi JS, Kim HS, Choi JS, Choi Y-E. Ultrasonic Treatment Enhanced Astaxanthin Production of Haematococcus pluvialis. J Microbiol [Internet]. 2023 [cited 28 Jul 2023];61(6):633–9. Available in: http://dx.doi.org/10.1007/s12275-023-00053-5 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.subject.proposal | Producción de biomasa | spa |
dc.subject.proposal | Música | spa |
dc.subject.proposal | Sonido audible | spa |
dc.subject.proposal | Onda sonora | spa |
dc.subject.proposal | Biomasa microbiana | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |