Mostrar el registro sencillo del ítem

dc.contributor.advisorEstupiñan Torres, Sandra Mónica
dc.contributor.advisorParra Giraldo, Claudia Marcela
dc.contributor.advisorVargas Casanova, Yerly
dc.contributor.authorRamírez Andrade, Julián David
dc.date.accessioned2024-05-21T17:27:05Z
dc.date.available2024-05-21T17:27:05Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.universidadmayor.edu.co/handle/unicolmayor/6891
dc.description.abstractActualmente las infecciones causadas por bacterias causan preocupación, debido principalmente a la resistencia que estos microrganismos ejercen a los agentes terapéuticos disponibles para su tratamiento. Por otro lado, las enfermedades cancerígenas han sido responsables de una alta morbimortalidad, hoy en día el tratamiento incluye procedimientos invasivos que en muchos casos llegan a ser altamente tóxicos y poco efectivos. Bajo el anterior escenario, los Péptidos Antimicrobianos (PAMs) se han convertido en una opción terapéutica novedosa, debido a que exhiben múltiples funciones biológicas. La melitina es un PAM lineal de 26 aminoácidos, extraído del veneno de la abeja Apis mellifera, para la cual ha reportado ser efectiva contra bacterias sensibles y resistentes, además de células cancerosas. Con el objetivo de encontrar péptidos más cortos que melitina, con igual o mayor actividad tanto antibacteriana como anticancerígena y con reducida toxicidad, se han sintetizado péptidos derivados de melitina con algunas modificaciones en su secuencia. Así entonces, el propósito de esta revisión fue recopilar artículos tanto experimentales como revisiones, de los últimos veinte años, que reporten actividad antibacteriana (especialmente en bacterias de importancia en salud pública) y anticancerígena, de péptidos derivados de melitina, comparándolos con la secuencia original. Como resultado se logró encontrar que los péptidos modificados (reducción y sustitución de aminoácidos e hibridación con moléculas de otras fuentes) lograron conservar o incluso potenciar estas actividades, reduciendo la citotoxicidad con respecto al péptido original.spa
dc.description.tableofcontentsTabla de Contenido RESUMEN 9 Introducción 11 1. Antecedentes 13 2. Marco Teórico 15 2.1 Péptidos Antimicrobianos (PAMs) 15 2.2 Melitina: Un péptido antimicrobiano 16 2.3 Actividad Antibacteriana 18 2.3.1. Actividad de Melitina en bacterias Grampositivas 19 2.3.2. Actividad de melitina en bacterias Gramnegativas 20 2.4. Actividad anticancerígena 21 3. Diseño Metodológico 24 3.1. Tipo de investigación 24 3.2 Universo, población y muestra 24 3.2.1. Universo 24 3.2.2. Población 24 3.2.3 Muestra 24 4. Metodología 24 4.1 Revisión bibliográfica. 24 4.2 Selección del material bibliográfico. 25 4.3 Elaboración de la estructura del documento. 25 5. Resultados y discusión 26 5.1 Revisión bibliográfica. 26 5.2 Selección del material bibliográfico. 26 5.3 Péptidos derivados de melitina con actividad antibacteriana 28 5.4. Mecanismos de acción de péptidos derivados de melitina en bacterias 33 5.5 Interacción de péptidos derivados de melitina con otras moléculas antibacterianas 36 5.6 Actividad Anticancerígena de péptidos derivados de melitina 45 6. Conclusiones 50 7. Referencias 52 Anexos 61spa
dc.format.extent67p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titlePéptidos derivados de Melitina: potenciales agentes antibacterianos y anticancerígenosspa
dc.typeTrabajo de grado - Pregradospa
dc.contributor.corporatenameUniversidad Colegio Mayor de Cundinamarcaspa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.Cspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesMoreno M C, González E R, Beltrán C. Mecanismos de resistencia antimicrobiana en patógenos respiratorios. Rev Otorrinolaringol y cirugía cabeza y cuello [Internet]. 2009;69(2):185–92. Available from: https://scielo.conicyt.cl/pdf/orl/v69n2/art14.pdfspa
dc.relation.referencesChávez-Jacobo VM. La batalla contra las superbacterias: No más antimicrobianos, no hay ESKAPE. TIP Rev Espec en Ciencias Químico-Biológicas. 2020;23:1–11.spa
dc.relation.referencesMattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health [Internet]. 2019;9(4):217–22. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310786/spa
dc.relation.referencesBaguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol [Internet]. 2010;46(3):308–16. Available from: https://link.springer.com/article/10.1007/s12033-010-9321-2spa
dc.relation.referencesBlock K, Gyllenhaal C, Lowe L, Amedei A, Amin R, Amin A, et al. A Broad-spectrum Integrative Prevention Design for Cancer Prevention and Therapy. Semin Cancer Biol [Internet]. 2015;35(Suppl):S276–304. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819002/spa
dc.relation.referencesHuan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020;11(October):1–21.spa
dc.relation.referencesPino-Angeles A, Lazaridis T. Effects of Peptide Charge, Orientation, and Concentration on Melittin Transmembrane Pores. Biophys J [Internet]. 2018;114(12):2865–74. Available from: https://doi.org/10.1016/j.bpj.2018.05.006spa
dc.relation.referencesPicoli T, Peter CM, Zani JL, Waller SB, Lopes MG, Boesche KN, et al. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microb Pathog [Internet]. 2017;112:57–62. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0882401017307386?via%3Dihubspa
dc.relation.referencesJo M, Park MH, Kollipara PS, An BJ, Song HS, Han SB, et al. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol [Internet]. 2012;258(1):72–81. Available from: http://dx.doi.org/10.1016/j.taap.2011.10.009spa
dc.relation.referencesIslam R, Siddiquia IA, Radyb M, Mukhtara H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Physiol Behav [Internet]. 2017;176(5):139–48. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682937/spa
dc.relation.referencesOršolić N. Bee venom in cancer therapy. Cancer Metastasis Rev. 2012;31(1–2):173–94.spa
dc.relation.referencesAkbari R, Hakemi Vala M, Hashemi A, Aghazadeh H, Sabatier JM, Pooshang Bagheri K. Action mechanism of melittin-derived antimicrobial peptides, MDP1 and MDP2, de novo designed against multidrug resistant bacteria. Amino Acids [Internet]. 2018;50(9):1231–43. Available from: https://doi.org/10.1007/s00726-018-2596-5spa
dc.relation.referencesMoghaddam MM, Abolhassani F, Babavalian H, Mirnejad R, Barjini KA, Amani J. Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli. Probiotics Antimicrob Proteins. 2012;4(2):133–9.spa
dc.relation.referencesPhoenix DA, Dennison SR, Harris F. Antimicrobial Peptides: Their History, Evolution, and Functional Promiscuity. Antimicrob Pept. 2013;1–37.spa
dc.relation.referencesNakatsuji T, Gallo RL. Antimicrobial peptides: Old molecules with new ideas. J Invest Dermatol [Internet]. 2012;132(3 PART 2):887–95. Available from: http://dx.doi.org/10.1038/jid.2011.387spa
dc.relation.referencesLehrer RI, Bevins CL, Ganz T. Defensins and other antimicrobial peptides and proteins. Comb Chem High Throughput Screen [Internet]. 2005;95–110. Available from: https://www.eurekaselect.com/61285/articlespa
dc.relation.referencesChena J, Larivierec W. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword. Prog Neurobiol [Internet]. 2010;23(1):1–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946189/spa
dc.relation.referencesMemariani H, Memariani M. Anti-fungal properties and mechanisms of melittin. Appl Microbiol Biotechnol [Internet]. 2020;104(15):6513–26. Available from: https://link.springer.com/article/10.1007%2Fs00253-020-10701-0spa
dc.relation.referencesSuchanek G, Kreil G, Hermodson MA. Amino acid sequence of honeybee prepromelittin synthesized in vitro. Proc Natl Acad Sci U S A. 1978;75(2):701–4.spa
dc.relation.referencesBogdanov S. Bee Venom : Composition , Health , Medicine : A Review. Bee Prod Sci [Internet]. 2011;(May):1–16. Available from: https://pdf4pro.com/download/bee-venom-composition-health-medicine-a-review-31d61b.htmlspa
dc.relation.referencesCastañeda-Casimiro J, Ortega-Roque JA, Venegas-Medina AM, Aquino-Andrade A, Serafín-López J, Estrada-Parra S, et al. www.medigraphic.com Artículo de revisión Péptidos antimicrobianos: péptidos con múltiples funciones Artemisa medigraphic en línea. Péptidos Antimicrob [Internet]. 2009;18:16–29. Available from: www.medigraphic.comspa
dc.relation.referencesAdade CM, Oliveira IRS, Pais JAR, Souto-Padrón T. Melittin peptide kills Trypanosoma cruzi parasites by inducing different cell death pathways. Toxicon [Internet]. 2013;69:227–39. Available from: http://dx.doi.org/10.1016/j.toxicon.2013.03.011spa
dc.relation.referencesRautenbach M, Troskie AM, Vosloo JA. Antifungal peptides: To be or not to be membrane active. Biochimie [Internet]. 2016;130:132–45. Available from: 54 http://dx.doi.org/10.1016/j.biochi.2016.05.013spa
dc.relation.referencesMwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res [Internet]. 2019;40(6):488–505. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822926/spa
dc.relation.referencesSplith K, Neundorf I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J [Internet]. 2011;40(4):387–97. Available from: https://link.springer.com/article/10.1007/s00249-011-0682-7spa
dc.relation.referencesLi J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front Neurosci. 2017;11(FEB):1–18.spa
dc.relation.referencesGutierrez P, Orduz S. PÉPTIDOS ANTIMICROBIANOS : ESTRUCTURA , FUNCIÓN Y APLICACIONES. Actual Biol [Internet]. 2003;25(78):5–15. Available from: https://revistas.udea.edu.co/index.php/actbio/article/view/329497/20785935spa
dc.relation.referencesTornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules. 2020;25(12):1–25.spa
dc.relation.referencesTéllez G, Castaño JC. Péptidos antimicrobianos Antimicrobial peptides. Iunics [Internet]. 2010;14(1):55–67. Available from: www.ncbi.nlm.nih.gov/pubmedspa
dc.relation.referencesZhang SF, Chen Z. Melittin exerts an antitumor effect on non-small celllung cancer cells. Mol Med Rep [Internet]. 2017;16(3):3581–6. Available from: https://www.spandidos-publications.com/10.3892/mmr.2017.6970spa
dc.relation.referencesFry DE. Antimicrobial peptides. Surg Infect (Larchmt). 2018;19(8):804–11.spa
dc.relation.referencesMiura Y. NMR studies on the monomer-tetramer transition of melittin in an aqueous solution at high and low temperatures. Eur Biophys J [Internet]. 2012;41(7):629–36. Available from: https://link.springer.com/article/10.1007%2Fs00249-012-0831-7spa
dc.relation.referencesVargas-Casanova Y, Rodríguez-Mayor AV, Cardenas KJ, Leal-Castro AL, Muñoz-Molina LC, Fierro-Medina R, et al. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. RSC Adv [Internet]. 2019;9(13):7239–45. Available from: https://pubs.rsc.org/spa
dc.relation.referencesLeón-Calvijo MA, Leal-Castro AL, Almanzar-Reina GA, Rosas-Pérez JE, García-Castañeda JE, Rivera-Monroy ZJ. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. Biomed Res Int. 2015;2015.spa
dc.relation.referencesVargas Casanova Y, Rodríguez Guerra JA, Umaña Pérez YA, Leal Castro AL, Almanzar Reina G, García Castañeda JE, et al. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules. 2017;22(10):1–11.spa
dc.relation.referencesVega SC, Martínez DA, Chalá M del S, Vargas HA, Rosas JE. Design, synthesis and evaluation of branched RRWQWR-based peptides as antibacterial agents against clinically relevant gram-positive and gram-negative pathogens. Front Microbiol. 2018;9(MAR).spa
dc.relation.referencesChoi JH, Jang AY, Lin S, Lim S, Kim D, Park K, et al. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus. Mol Med Rep [Internet]. 2015;12(5):6483–90. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626175/pdf/mmr-12-05-6483.pdfspa
dc.relation.referencesPineda-Castañeda HM, Bonilla-Velásquez LD, Leal-Castro AL, Fierro-Medina R, García-Castañeda JE, Rivera-Monroy ZJ. Use of Click Chemistry for Obtaining an Antimicrobial Chimeric Peptide Containing the LfcinB and Buforin II Minimal Antimicrobial Motifs. ChemistrySelect. 2020;5(5):1655–7.spa
dc.relation.referencesLiu C cui, Hao D jun, Zhang Q, An J, Zhao J jing, Chen B, et al. Application of bee venom and its main constituent melittin for cancer treatment. Cancer Chemother Pharmacol [Internet]. 2016;78(6):1113–30. Available from: https://link.springer.com/article/10.1007/s00280-016-3160-1spa
dc.relation.referencesWu Q, Patočka J, Kuča K. Insect antimicrobial peptides, a mini review. Toxins (Basel) [Internet]. 2018;10(11):1–17. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267271/spa
dc.relation.referencesShin JM, Jeong YJ, Cho HJ, Park KK, Chung IK, Lee IK, et al. Melittin Suppresses HIF-1α/VEGF Expression through Inhibition of ERK and mTOR/p70S6K Pathway in Human Cervical Carcinoma Cells. PLoS One [Internet]. 2013;8(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720276/spa
dc.relation.referencesShaw P, Kumar N, Hammerschmid D, Privat-Maldonado A, Dewilde S, Bogaerts A. Synergistic effects of melittin and plasma treatment: A promising approach for cancer therapy. Cancers (Basel) [Internet]. 2019;11(8):1–19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721819/spa
dc.relation.referencesGajski G, Garaj-Vrhovac V. Melittin: A lytic peptide with anticancer properties. Environ Toxicol Pharmacol [Internet]. 2013;36(2):697–705. Available from: http://dx.doi.org/10.1016/j.etap.2013.06.009spa
dc.relation.referencesMarques Pereira AF, Albano M, Bérgamo Alves FC, Murbach Teles Andrade BF, Furlanetto A, Mores Rall VL, et al. Influence of apitoxin and melittin from Apis mellifera bee on Staphylococcus aureus strains. Microb Pathog [Internet]. 2020;141:104011. Available from: https://doi.org/10.1016/j.micpath.2020.104011spa
dc.relation.referencesMemariani H, Memariani M, Shahidi-Dadras M, Nasiri S, Akhavan MM, Moravvej H. Melittin: from honeybees to superbugs. Appl Microbiol Biotechnol [Internet]. 2019;103(8):3265–76. Available from: https://link.springer.com/article/10.1007%2Fs00253-019-09698-yspa
dc.relation.referencesLakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018;31(4):1–103.spa
dc.relation.referencesBoucher HW, Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis [Internet]. 2008;46(SUPPL. 5). Available from: https://academic.oup.com/cid/article/46/Supplement_5/S344/471923spa
dc.relation.referencesDosler S, Alev Gerceker A. In vitro activities of antimicrobial cationic peptides; melittin and nisin, alone or in combination with antibiotics against Gram-positive bacteria. J Chemother [Internet]. 2012;24(3):137–43. Available from: https://www.tandfonline.com/doi/abs/10.1179/1973947812Y.0000000007?journalCode=yjoc20spa
dc.relation.referencesLeandro LF, Mendes CA, Casemiro LA, Vinholis AHC, Cunha WR, De Almeida R, et al. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera) venom against oral pathogens. An Acad Bras Cienc [Internet]. 2015;87(1):147–55. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000100147&lng=en&tlng=enspa
dc.relation.referencesCeci M, Delpech G, Sparo M, Mezzina V, Bruni SS, Baldaccini B. Clinical and microbiological features of bacteremia caused by enterococcus faecalis. J Infect Dev Ctries [Internet]. 2015;9(11):1195–203. Available from: https://jidc.org/index.php/journal/article/view/26623628/1412spa
dc.relation.referencesDavis E, Hicks L, Ali I, Salzman E, Wang J, Snitkin E, et al. Epidemiology of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis colonization in nursing facilities. Open Forum Infect Dis. 2020;7(1).spa
dc.relation.referencesEbbensgaard A, Mordhorst H, Overgaard MT, Nielsen CG, Aarestrup FM, Hansen EB. Comparative evaluation of the antimicrobial activity of different antimicrobial peptides against a range of pathogenic Bacteria. PLoS One. 2015;10(12):1–18.spa
dc.relation.referencesBardbari AM, Arabestani MR, Karami M, Keramat F, Aghazadeh H, Alikhani MY, et al. Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of acinetobacter baumannii. Eur J Clin Microbiol Infect Dis [Internet]. 2018;37(3):443–54. Available from: https://link.springer.com/article/10.1007%2Fs10096-018-3189-7spa
dc.relation.referencesKaryne R, Lechuga GC, Souza ALA, Carvalho JPR da S, Bôas MHSV, De Simone SG. Pan-drug resistant acinetobacter baumannii, but not other strains, are resistant to the bee venom peptide mellitin. Antibiotics [Internet]. 2020;9(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235889/spa
dc.relation.referencesKaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2(2):123–40.spa
dc.relation.referencesAlarcon A, Omenaca F. Antimicrobial Resistance in Escherichia coli Sepsis. Pediatr Infect Dis J [Internet]. 2004;23(10):979–80. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.ARBA-0026-2017spa
dc.relation.referencesPaz-Zarza VM, Mangwani-Mordani S, Martínez-Maldonado A, Álvarez-Hernández D, Solano-Gálvez SG, Vázquez-López R. Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Rev Chil infectología. 2019;36(2):180–9.spa
dc.relation.referencesHakimi Alni R, Tavasoli F, Barati A, Shahrokhi Badarbani S, Salimi Z, Babaeekhou L. Synergistic activity of melittin with mupirocin: A study against methicillin-resistant S. Aureus (MRSA) and methicillin-susceptible S. Aureus (MSSA) isolates. Saudi J Biol Sci [Internet]. 2020;27(10):2580–5. Available from: https://doi.org/10.1016/j.sjbs.2020.05.027spa
dc.relation.referencesSubbalakshmi C, Nagaraj R, Sitaram N. Biological activities of C-terminal 15-residue synthetic fragment of melittin: Design of an analog with improved antibacterial activity. FEBS Lett [Internet]. 1999;448(1):62–6. Available from: https://febs.onlinelibrary.wiley.com/doi/full/10.1016/S0014-5793%2899%2900328-2spa
dc.relation.referencesHakimi Alni R, Tavasoli F, Barati A, Shahrokhi Badarbani S, Salimi Z, Babaeekhou L. Synergistic activity of melittin with mupirocin: A study against methicillin-resistant S. Aureus (MRSA) and methicillin-susceptible S. Aureus (MSSA) isolates. Saudi J Biol Sci [Internet]. 2020;(xxxx). Available from: https://doi.org/10.1016/j.sjbs.2020.05.027spa
dc.relation.referencesKillion JJ, Dunn JD. Differential cytolysis of murine spleen, bone-marrow and leukemia cells by melittin reveals differences in membrane topography. Biochem Biophys Res Commun [Internet]. 1986;139(1):222–7. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0006291X86801024?via%3Dihubspa
dc.relation.referencesZhu HG, Tayeh I, Israel L, Castagna M. Different susceptibility of lung cell lines to inhibitors of tumor promotion and inducers of differentiation. J Biol Regul Homeost Agents. 1991;5(2):52–8.spa
dc.relation.referencesLiu S, Yu M, He Y, Xiao L, Wang F, Song C, et al. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology [Internet]. 2008;47(6):1964–73. Available from: https://aasldpubs.onlinelibrary.wiley.com/doi/10.1002/hep.22240spa
dc.relation.referencesMeong Cheol S, Kyoung AM, Heesun C, Cheol M, Yongzhuo H, Huining H, et al. Preparation and Characterization of Gelonin-Melittin Fusion Biotoxin for Synergistically Enhanced Anti-Tumor Activity. Physiol Behav [Internet]. 2017;176(5):139–48. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967393/spa
dc.relation.referencesKe M, Dong J, Wang Y, Zhang J, Zhang M, Wu Z, et al. MEL-pep, an analog of melittin, disrupts cell membranes and reverses 5-fluorouracil resistance in human hepatocellular carcinoma cells. Int J Biochem Cell Biol [Internet]. 2018;101:39–48. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1357272518301250?via%3Dihubspa
dc.relation.referencesSoliman C, Eastwood S, Truong VK, Ramsland PA, Elbourne A. The membrane effects of melittin on gastric and colorectal cancer. PLoS One [Internet]. 2019;14(10):1–16. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797111/spa
dc.relation.referencesYan H, Li S, Sun X, Mi H, He B. Individual substitution analogs of Mel(12-26), melittin’s C-terminal 15-residue peptide: Their antimicrobial and hemolytic actions. FEBS Lett. 2003;554(1–2):100–4.spa
dc.relation.referencesGarcía MG, San IJ, Galán J, Fidel II, Morales E. Péptidos antimicrobianos :potencialidades terapéuticas Antimicrobial peptides: their therapeutic potential. Rev Cubana Med Trop. 2017;69(2):1–13.spa
dc.relation.referencesSun X, Chen S, Li S, Yan H, Fan Y, Mi H. Deletion of two C-terminal Gln residues of 12-26-residue fragment of melittin improves its antimicrobial activity. Peptides. 2005;26(3):369–75.spa
dc.relation.referencesAlmaaytah A, Tarazi S, Al-Fandi M, Abuilhaija A, Al-Shar’i N, Al-Balas Q, et al. The design and functional characterization of the antimicrobial and antibiofilm activities of BMAP27-Melittin, a rationally designed hybrid peptide. Int J Pept Res Ther [Internet]. 2015;21(2):165–77. Available from: http://dx.doi.org/10.1007/s10989-014-9444-6spa
dc.relation.referencesXiaoyu Z, Deshui Y, Hainan G, Liqiang M, Jing L, Shumei Z, et al. Design, synthesis and antibacterial activity of a novel hybrid antimicrobial peptide LFM23. African J Biotechnol. 2012;11(8):2107–12.spa
dc.relation.referencesRodríguez-Hernández MJ, Saugar J, Docobo-Pérez F, de la Torre BG, Pachón-Ibáñez ME, García-Curiel A, et al. Studies on the antimicrobial activity of cecropin A-melittin hybrid peptides in colistin-resistant clinical isolates of Acinetobacter baumannii. J Antimicrob Chemother [Internet]. 2006;58(1):95–100. Available from: https://academic.oup.com/jac/article/58/1/95/726655spa
dc.relation.referencesBarletta Farías R, Pérez Ponce L, Castro Vega G, Pujol Pérez M, Barletta del Castillo J, Dueñas Pérez Y. Acinetobacter baumannii multirresistente: un reto para la terapéutica actual. Medisur Rev Ciencias Médicas Cienfuegos [Internet]. 2018;16(2):322–34. Available from: http://scielo.sld.cu/pdf/ms/v16n2/ms15216.pdfspa
dc.relation.referencesLu X, Liu J, Gou L, Li J, Yuan B, Yang K, et al. Designing Melittin-Graphene Hybrid Complexes for Enhanced Antibacterial Activity. Adv Healthc Mater. 2019;8(9):1–10.spa
dc.relation.referencesSaugar JM, Rodríguez-Hernández MJ, De La Torre BG, Pachón-Ibañez ME, Fernández-Reyes M, Andreu D, et al. Activity of cecropin A-melittin hybrid peptides against colistin-resistant clinical strains of Acinetobacter baumannii: Molecular basis for the differential mechanisms of action. Antimicrob Agents Chemother. 2006;50(4):1251–6.spa
dc.relation.referencesPark C, Lee DG. Melittin induces apoptotic features in Candida albicans. Biochem Biophys Res Commun [Internet]. 2010;394(1):170–2. Available from: http://dx.doi.org/10.1016/j.bbrc.2010.02.138spa
dc.relation.referencesJamasbi E, Mularski A, Separovic F. Model Membrane and Cell Studies of Antimicrobial Activity of Melittin Analogues. Curr Top Med Chem. 2016;16:40–5.spa
dc.relation.referencesChoi H, Lee DG. Synergistic effect of antimicrobial peptide arenicin-1 in combination with antibiotics against pathogenic bacteria. Res Microbiol [Internet]. 2012;163(6–7):479–86. Available from: http://dx.doi.org/10.1016/j.resmic.2012.06.001spa
dc.relation.referencesMartinez M, Gonçalves S, Felício MR, Maturana P, Santos NC, Semorile L, et al. Synergistic and antibiofilm activity of the antimicrobial peptide P5 against carbapenem-resistant Pseudomonas aeruginosa. Biochim Biophys Acta - Biomembr [Internet]. 2019;1861(7):1329–37. Available from: https://doi.org/10.1016/j.bbamem.2019.05.008spa
dc.relation.referencesAl-Ani I, Zimmermann S, Reichling J, Wink M. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine. 2015;22(2):245–55.spa
dc.relation.referencesGiacometti A, Cirioni O, Kamysz W, D’Amato G, Silvestri C, Del Prete MS, et al. Comparative activities of cecropin A, melittin, and cecropin A-melittin peptide CA(1-7)M(2-9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides. 2003;24(9):1315–8.spa
dc.relation.referencesGiacometti A, Cirioni O, Kamysz W, D’Amato G, Silvestri C, Del Prete MS, et al. In vitro activity and killing effect of the synthetic hybrid cecropin A-melittin peptide CA(1-7)M(2-9)NH2 on methicillin-resistant nosocomial isolates of Staphylococcus aureus and interactions with clinically used antibiotics. Diagn Microbiol Infect Dis [Internet]. 2004;49(3):197–200. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0732889304000422?via%3Dihubspa
dc.relation.referencesGeitani R, Ayoub Moubareck C, Touqui L, Karam Sarkis D. Cationic antimicrobial peptides: Alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol [Internet]. 2019;19(1):1–12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408789/pdf/12866_2019_Article_1416.pdfspa
dc.relation.referencesCiandrini E, Morroni G, Cirioni O, Kamysz W, Kamysz E, Brescini L, et al. Synergistic combinations of antimicrobial peptides against biofilms of methicillin-resistant Staphylococcus aureus (MRSA) on polystyrene and medical devices. J Glob Antimicrob Resist [Internet]. 2020;21:203–10. Available from: https://doi.org/10.1016/j.jgar.2019.10.022spa
dc.relation.referencesGopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, et al. Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant acinetobacter baumannii strains. Antimicrob Agents Chemother [Internet]. 2014;58(3):1622–9. Available from: https://journals.asm.org/doi/full/10.1128/AAC.02473-13spa
dc.relation.referencesJamasbi E, Lucky SS, Li W, Hossain MA, Gopalakrishnakone P, Separovic F. Effect of dimerized melittin on gastric cancer cells and antibacterial activity. Amino Acids [Internet]. 2018;50(8):1101–10. Available from: https://doi.org/10.1007/s00726-018-2587-6spa
dc.relation.referencesJiang X, Qian K, Liu G, Sun L, Zhou G, Li J, et al. Design and activity study of a melittin–thanatin hybrid peptide. AMB Express [Internet]. 2019;9(1). Available from: https://doi.org/10.1186/s13568-019-0739-zspa
dc.relation.referencesWan L lan, Zhang D qi, Zhang J nan, Ren L qun. Anti-hepatocarcinoma activity of TT-1, an analog of melittin, combined with interferon-α via promoting the interaction of NKG2D and MICA. J Zhejiang Univ Sci B [Internet]. 2017;18(6):522–31. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481301/spa
dc.relation.referencesTtWan L, Zhang D, Zhang J, Ren L. Tt-1, an analog of melittin, triggers apoptosis in human thyroid cancer TT cells via regulating caspase, Bcl-2 and bax. Oncol Lett [Internet]. 2018;15(1):1271–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768099/spa
dc.relation.referencesXu T, Cui T, Peng L, Kong S, Zou J, Tian X. The anti-hepatocellular carcinoma activity of Mel-P15 is mediated by natural killer cells. Oncol Lett [Internet]. 2017;14(6):6901–6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5686529/pdf/ol-14-06-6901.pdfspa
dc.relation.referencesLee YJ, Kang SJ, Kim BM, Kim YJ, Woo HD, Chung HW. Cytotoxicity of honeybee (Apis mellifera) venom in normal human lymphocytes and HL-60 cells. Chem Biol Interact [Internet]. 2007;169(3):189–97. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0009279707002013?via%3Dihubspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalPéptidos antimicrobianosspa
dc.subject.proposalMelitinaspa
dc.subject.proposalActividad antibacterianaspa
dc.subject.proposalActividad anticancerígenaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024