Publicación: Actividad inmunomoduladora y antifúngica del péptido LL37-1 en el tratamiento de la candidiasis vulvovaginal: Un estudio in vitro e in vivo
| dc.contributor.advisor | Muñoz Henao, Julián Esteban | |
| dc.contributor.advisor | Cruz Baquero, Claudia Andrea | |
| dc.contributor.author | Suarez Velandia, Maicol Mauricio | |
| dc.date.accessioned | 2025-11-11T16:00:22Z | |
| dc.date.issued | 2024-11 | |
| dc.description.abstract | Candida albicans, es el principal agente etiológico de la candidiasis vulvovaginal (VVC), una enfermedad inflamatoria del tracto genital que afecta a mujeres inmunocompetentes. En este estudio se evaluó la actividad antifúngica e inmunomoduladora del péptido LL37-1 en el tratamiento de la VVC. Este péptido es un derivado de la catelicidina humana LL37, que en estudios previos demostró un efecto antifúngico promisorio. Determinamos la toxicidad de LL37-1 en fibroblastos embrionarios murinos L929 y evaluamos su interacción con polimorfonucleares (PMN) humanos. Además, se analizó el efecto de LL37-1 en el proceso de NETosis mediante la evaluación de MPO. In vivo se cuantificó la carga fúngica de animales tratados con el péptido LL37-1, se analizó la presencia de PMN mediante inmunohistoquímica de células MPO+ y los niveles de citoquinas en el canal vaginal se midieron a través de ELISA. Demostramos que LL37-1 potencia la capacidad fagocitica, induce la muerte de levaduras en PMN e inhibe la NETosis. LL37-1 aumenta la viabilidad de PMN y no es tóxico en células murinas. Los PMN estimulados con LL37-1 aumentaron significativamente los niveles de IFN-γ. LL37-1 disminuye la carga fúngica en el canal vaginal, reduce la presencia de células MPO+ y la producción de citoquinas proinflamatorias, regulando positivamente IL-17A en VVC. Comprobamos que LL37-1 es una alternativa terapéutica promisoria para el tratamiento de la VVC, ya que disminuye la carga fúngica y mejora la inmunidad innata frente a Candida albicans. | |
| dc.description.degreelevel | Pregrado | |
| dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | |
| dc.description.tableofcontents | TABLA DE CONTENIDO 1. Introducción 10 2. Antecedentes 12 3. Objetivos 14 4. Marco Teórico 4.1. Género Candida 4.2 Factores de virulencia 4.3 Candidiasis vulvovaginal (VVC) 4.4 Factores de riesgo y síntomas de la VVC 4.5. Inmunopatología de la VVC 4.6.Tratamiento de la VVC 4.7. Catelicidina humana LL37 4.8 Propiedades antifúngicas de LL37 4.9 Propiedades inmunomoduladoras de LL37 4.10 Modificaciones estructurales del péptido LL 37 4.11 Péptido LL37-1 15 15 15 16 17 17 19 19 19 20 21 21 5. Metodología 22 5.1 Diseño metodológico 22 5.2 Materiales y métodos 5.2.1 Microorganismo 5.2.2 Péptido LL37-1 5.2.3 Viabilidad de línea celular L929 5.2.4 Ensayo de Citotoxicidad 5.2.5 Aislamiento de polimorfonucleares 5.2.6 Actividad fungicida y fagocítica de PMN 5.2.7 Viabilidad celular de PMN 5.2.8 Estimulación de PMN y NETosis 5.2.9 Inmunofluorescencia 5.2.10 Estimulación de PBMC 5.2.11 Animales experimentales 5.2.12 Modelo in vivo de Candidiasis Vulvovaginal. 5.2.13 Evaluación de la carga fúngica 5.2.14 Análisis histopatológico 5.2.15 Inmunohistoquímica de células MPO + en el canal vaginal 5.2.16 Medición de citoquinas 5.2.17 Análisis estadístico 22 22 22 23 23 23 24 24 24 25 25 25 25 26 26 27 27 27 6. Resultados 6.1 El péptido LL37-1 posee una baja toxicidad en células L929 28 28 6 6.2 Los PMN estimulados con LL37-1 poseen un mayor potencial antifúngico 6.3 LL37-1 inhibe la NETosis en neutrófilos humanos e induce IFN-γ 6.4 LL37-1 regula positivamente IL-71A e IFN-γ en PBMC humanos 6.5 LL37-1 resuelve la VVC en un modelo murino 6.6 LL37-1 modula el estado inflamatorio en VVC 29 30 32 33 35 7. Discusión 37 8. Conclusión 41 9. Bibliografía 42 | |
| dc.format.extent | 47p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://repositorio.universidadmayor.edu.co/handle/unicolmayor/7255 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Colegio Mayor de Cundinamarca | |
| dc.publisher.faculty | Facultad de Ciencias de la Salud | |
| dc.publisher.place | Bogota | |
| dc.publisher.program | Bacteriología y Laboratorio Clínico | |
| dc.relation.references | Achkar JM, Fries BC. Candida infections of the genitourinary tract. Clin Microbiol Rev. 2010 Apr;23(2):253-73. | |
| dc.relation.references | Rathod SD, Buffler PA. Highly-cited estimates of the cumulative incidence and recurrence of vulvovaginal candidiasis are inadequately documented. BMC Womens Health. 2014 Mar 10;14(1):43. | |
| dc.relation.references | Benedict K, Singleton AL, Jackson BR, Molinari NAM. Survey of incidence, lifetime prevalence, and treatment of self-reported vulvovaginal candidiasis, United States, 2020. BMC Womens Health. 2022 May 10;22(1):147. | |
| dc.relation.references | Zhang X, Essmann M, Burt ET, Larsen B. Estrogen effects on Candida albicans: a potential virulence-regulating mechanism. J Infect Dis. 2000 Apr;181(4):1441-6. | |
| dc.relation.references | Benedict K, Jackson BR, Chiller T, Beer KD. Estimation of Direct Healthcare Costs of Fungal Diseases in the United States. Clin Infect Dis. 2019 May 17;68(11):1791-1797. | |
| dc.relation.references | Ge G, Yang Z, Li D, Zhang N, Chen B, Shi D. Distinct host immune responses in recurrent vulvovaginal candidiasis and vulvovaginal candidiasis. Front Immunol. 2022;13:959740. | |
| dc.relation.references | Workowski KA, Bachmann LH, Chan PA, Johnston CM, Muzny CA, Park I, Reno H, Zenilman JM, Bolan GA. Sexually Transmitted Infections Treatment Guidelines, 2021. MMWR Recomm Rep. 2021 Jul 23;70(4):1-187. | |
| dc.relation.references | Farr A, Effendy I, Frey Tirri B, Hof H, Mayser P, Petricevic L, Ruhnke M, Schaller M, Schaefer APA, Sustr V, Willinger B, Mendling W. Guideline: Vulvovaginal candidosis (AWMF 015/072, level S2k). Mycoses. 2021 Jun;64(6):583-602. | |
| dc.relation.references | Richardson JP, Mogavero S, Moyes DL, Blagojevic M, Krüger T, Verma AH, Coleman BM, De La Cruz Diaz J, Schulz D, Ponde NO, Carrano G, Kniemeyer O, Wilson D, Bader O, Enoiu SI, Ho J, Kichik N, Gaffen SL, Hube B, Naglik JR. Processing of Candida albicans Ece1p Is Critical for Candidalysin Maturation and Fungal Virulence. mBio. 2018 Jan 23;9(1):e02178-17. | |
| dc.relation.references | Moyes, David L et al. “Candidalysin is a fungal peptide toxin critical for mucosal infection.” Nature vol. 532,7597 (2016): 64-8. | |
| dc.relation.references | Yano, Junko et al. “Novel Mechanism behind the Immunopathogenesis of Vulvovaginal Candidiasis: "Neutrophil Anergy".” Infection and immunity vol. 86,3 e00684-17. | |
| dc.relation.references | Yano, Junko et al. “Novel Mechanism behind the Immunopathogenesis of Vulvovaginal Candidiasis: "Neutrophil Anergy".” Infection and immunity vol. 86,3 e00684-17. | |
| dc.relation.references | Dürr, Ulrich H N et al. “LL-37, the only human member of the cathelicidin family of antimicrobial peptides.” Biochimica et biophysica acta vol. 1758,9 (2006): 1408-25. | |
| dc.relation.references | Brogden, Kim A. “Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?.” Nature reviews. Microbiology vol. 3,3 (2005): 238-50. | |
| dc.relation.references | De Yang et al. “LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells.” The Journal of experimental medicine vol. 192,7 (2000): 1069-74. | |
| dc.relation.references | Zhang, Xianwei et al. “The cationic peptide LL-37 binds Mac-1 (CD11b/CD18) with a low dissociation rate and promotes phagocytosis.” Biochimica et biophysica acta vol. 1864,5 (2016): 471-8. | |
| dc.relation.references | Rosenfeld, Yosef et al. “Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action.” The Journal of biological chemistry vol. 281,3 (2006): 1636-43. | |
| dc.relation.references | Conti, Heather R et al. “IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis.” Cell host & microbe vol. 20,5 (2016): 606-617. | |
| dc.relation.references | Rossi, Diego C et al. “Therapeutic use of a cationic antimicrobial peptide from the spider Acanthoscurria gomesiana in the control of experimental candidiasis.” BMC microbiology vol. 12 28. 6 Mar. 2012 | |
| dc.relation.references | Muñoz JE, Rossi DCP, Ishida K, et al. Antifungal Activity of the Biphosphinic Cyclopalladate C7a against Candida albicans Yeast Forms In Vitro and In Vivo. Front Microbiol. 2017;8:771 | |
| dc.relation.references | Csato, M et al. “Enhancement of Candida albicans killing activity of separated human epidermal cells by alpha-melanocyte stimulating hormone.” The British journal of dermatology vol. 121,1 (1989): 145-7. | |
| dc.relation.references | d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, et al. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev. 2021;45(3). | |
| dc.relation.references | Doron I, Mesko M, Li XV, Kusakabe T, Leonardi I, Shaw DG, et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn's disease. Nat Microbiol. 2021;6(12):1493-504. | |
| dc.relation.references | 25.Silva-Dias A, Miranda IM, Branco J, Monteiro-Soares M, Pina-Vaz C, Rodrigues AG. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp. Front Microbiol. 2015;6:205. | |
| dc.relation.references | 26.Scarsini M, Tomasinsig L, Arzese A, D'Este F, Oro D, Skerlavaj B. Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections. Peptides. 2015;71:211-21. | |
| dc.relation.references | 27.Hoyer LL, Cota E. Candida albicans Agglutinin-Like Sequence (Als) Family Vignettes: A Review of Als Protein Structure and Function. Front Microbiol. 2016;7:280. | |
| dc.relation.references | 28.Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007;5(3):e64. | |
| dc.relation.references | 29.Rajendran R, Sherry L, Nile CJ, Sherriff A, Johnson EM, Hanson MF, et al. Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection-Scotland, 2012-2013. Clin Microbiol Infect. 2016;22(1):87-93. | |
| dc.relation.references | 30.Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, et al. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res. 2001;80(3):903-8. | |
| dc.relation.references | 31.Uppuluri P, Acosta Zaldivar M, Anderson MZ, Dunn MJ, Berman J, Lopez Ribot JL, et al. Candida albicans Dispersed Cells Are Developmentally Distinct from Biofilm and Planktonic Cells. mBio. 2018;9(4). | |
| dc.relation.references | 32.Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 2017;15(2):96-108. | |
| dc.relation.references | 33.d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, et al. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev. 2021;45(3) | |
| dc.relation.references | 34.Doron I, Mesko M, Li XV, Kusakabe T, Leonardi I, Shaw DG, et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn's disease. Nat Microbiol. 2021;6(12):1493-504. | |
| dc.relation.references | 35.Hoyer LL, Cota E. Candida albicans Agglutinin-Like Sequence (Als) Family Vignettes: A Review of Als Protein Structure and Function. Front Microbiol. 2016;7:280. | |
| dc.relation.references | 36.Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007;5(3):e64. | |
| dc.relation.references | 37.Gow NA, Brown AJ, Odds FC. Fungal morphogenesis and host invasion. Curr Opin Microbiol. 2002;5(4):366-71. | |
| dc.relation.references | 38.Sudbery P, Gow N, Berman J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004;12(7):317-24. | |
| dc.relation.references | 39.Pande K, Chen C, Noble SM. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet. 2013;45(9):1088-91. | |
| dc.relation.references | 40.Sasse C, Hasenberg M, Weyler M, Gunzer M, Morschhauser J. White-opaque switching of Candida albicans allows immune evasion in an environment-dependent fashion. Eukaryot Cell. 2013;12(1):50-8. | |
| dc.relation.references | 41.Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369(9577):1961-71. | |
| dc.relation.references | 42.Farr A, Effendy I, Frey Tirri B, Hof H, Mayser P, Petricevic L, et al. Guideline: Vulvovaginal candidosis (AWMF 015/072, level S2k). Mycoses. 2021;64(6):583-602. | |
| dc.relation.references | 43.Jang SJ, Lee K, Kwon B, You HJ, Ko G. Vaginal lactobacilli inhibit growth and hyphae formation of Candida albicans. Sci Rep. 2019;9(1):8121. | |
| dc.relation.references | 44.Rosentul DC, Delsing CE, Jaeger M, Plantinga TS, Oosting M, Costantini I, et al. Gene polymorphisms in pattern recognition receptors and susceptibility to idiopathic recurrent vulvovaginal candidiasis. Front Microbiol. 2014;5:483. | |
| dc.relation.references | 45.Eckert LO, Hawes SE, Stevens CE, Koutsky LA, Eschenbach DA, Holmes KK. Vulvovaginal candidiasis: clinical manifestations, risk factors, management algorithm. Obstet Gynecol. 1998;92(5):757-65. | |
| dc.relation.references | 46.Kalia N, Singh J, Kaur M. Immunopathology of Recurrent Vulvovaginal Infections: New Aspects and Research Directions. Front Immunol. 2019;10:2034. | |
| dc.relation.references | 47.Richardson JP, Mogavero S, Moyes DL, Blagojevic M, Kruger T, Verma AH, et al. Processing of Candida albicans Ece1p Is Critical for Candidalysin Maturation and Fungal Virulence. mBio. 2018;9(1). | |
| dc.relation.references | 48.Moyes DL, Runglall M, Murciano C, Shen C, Nayar D, Thavaraj S, et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe. 2010;8(3):225-35. | |
| dc.relation.references | 49.Willems HME, Ahmed SS, Liu J, Xu Z, Peters BM. Vulvovaginal Candidiasis: A Current Understanding and Burning Questions. J Fungi (Basel). 2020;6(1). | |
| dc.relation.references | 50.Gow NA, van de Veerdonk FL, Brown AJ, Netea MG. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol. 2011;10(2):112-22. | |
| dc.relation.references | 51.Conti HR, Bruno VM, Childs EE, Daugherty S, Hunter JP, Mengesha BG, et al. IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis. Cell Host Microbe. 2016;20(5):606-17. | |
| dc.relation.references | 52.Rosentul DC, Delsing CE, Jaeger M, et al. Gene polymorphisms in pattern recognition receptors and susceptibility to idiopathic recurrent vulvovaginal candidiasis. Front Microbiol. 2014;5:483. | |
| dc.relation.references | 53.Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-1535. | |
| dc.relation.references | 54.Branzk N, Lubojemska A, Hardison SE, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014;15(11):1017-1025. | |
| dc.relation.references | 55.Zambrano F, Melo A, Rivera-Concha R, Schulz M, Uribe P, Fonseca-Salamanca F, Ossa X, Taubert A, Hermosilla C, Sánchez R. High Presence of NETotic Cells and Neutrophil Extracellular Traps in Vaginal Discharges of Women with Vaginitis: An Exploratory Study. Cells. 2022; 11(20):3185. | |
| dc.relation.references | 56.Pappas, Peter G et al. “Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America.” Clinical infectious diseases : an official publication of the Infectious Diseases Society of America vol. 62,4 (2016): e1-50. | |
| dc.relation.references | 57.Nyirjesy P, Brookhart C, Lazenby G, Schwebke J, Sobel JD. Vulvovaginal Candidiasis: A Review of the Evidence for the 2021 Centers for Disease Control and Prevention of Sexually Transmitted Infections Treatment Guidelines. Clin Infect Dis. 2022 Apr 13;74(Suppl_2):S162-S168. | |
| dc.relation.references | 58.Pappas, Peter G et al. “Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America.” Clinical infectious diseases : an official publication of the Infectious Diseases Society of America vol. 48,5 (2009): 503-35. | |
| dc.relation.references | 59.Donders, Gilbert et al. “Management of recurrent vulvovaginal candidosis: Narrative review of the literature and European expert panel opinion.” Frontiers in cellular and infection microbiology vol. 12 934353. 9 Sep. 2022. | |
| dc.relation.references | 60.Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Rev Dis Primers. 2018;4:18026. | |
| dc.relation.references | 61.Rossi DC, Munoz JE, Carvalho DD, Belmonte R, Faintuch B, Borelli P, et al. Therapeutic use of a cationic antimicrobial peptide from the spider Acanthoscurria gomesiana in the control of experimental candidiasis. BMC Microbiol. 2012;12:28. | |
| dc.relation.references | 62.Munoz JE, Rossi DCP, Ishida K, Spadari CC, Melhem MSC, Garcia DM, et al. Antifungal Activity of the Biphosphinic Cyclopalladate C7a against Candida albicans Yeast Forms In Vitro and In Vivo. Front Microbiol. 2017;8:771. | |
| dc.relation.references | 63.Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun. 1995;63(4):1291-1297. | |
| dc.relation.references | 64.Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun. 1995;63(4):1291-1297. | |
| dc.relation.references | 65.Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J. 1999;341 ( Pt 3)(Pt 3):501-513. | |
| dc.relation.references | 66.Durr UH, Sudheendra US, Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta. 2006;1758(9):1408-25. | |
| dc.relation.references | 67.Burton, Matthew F, and Patrick G Steel. “The chemistry and biology of LL-37.” Natural product reports vol. 26,12 (2009): 1572-84. | |
| dc.relation.references | 68.Hsu, Chun-Min et al. “Candida albicans Sfp1 Is Involved in the Cell Wall and Endoplasmic Reticulum Stress Responses Induced by Human Antimicrobial Peptide LL-37.” International journal of molecular sciences vol. 22,19 10633. 30 Sep. 2021 | |
| dc.relation.references | 69.Tsai, Pei-Wen et al. “Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates.” PloS one vol. 6,3 e17755. 14 Mar. 2011 | |
| dc.relation.references | 70.Scheenstra MR, van den Belt M, Tjeerdsma-van Bokhoven JLM, et al. Cathelicidins PMAP-36, LL-37 and CATH-2 are similar peptides with different modes of action. Sci Rep. 2019;9(1):4780. | |
| dc.relation.references | 71.Luo, Yu et al. “The Naturally Occurring Host Defense Peptide, LL-37, and Its Truncated Mimetics KE-18 and KR-12 Have Selected Biocidal and Antibiofilm Activities Against Candida albicans, Staphylococcus aureus, and Escherichia coli In vitro.” Frontiers in microbiology vol. 8 544. 31 Mar. 2017 | |
| dc.relation.references | 72.Yang, Binbin et al. “Significance of LL-37 on Immunomodulation and Disease Outcome.” BioMed research international vol. 2020 8349712. 16 May. 2020 | |
| dc.relation.references | 73.De Yang et al. “LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells.” The Journal of experimental medicine vol. 192,7 (2000): 1069-74. | |
| dc.relation.references | 74.Scott, Monisha G et al. “The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses.” Journal of immunology (Baltimore, Md. : 1950) vol. 169,7 (2002): 3883-91. | |
| dc.relation.references | 75.Cao, Yujie et al. “LL-37 promotes neutrophil extracellular trap formation in chronic rhinosinusitis with nasal polyps.” Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology vol. 49,7 (2019): 990-999. | |
| dc.relation.references | 76.Kim, Sae-Hae et al. “Antimicrobial peptide LL-37 promotes antigen-specific immune responses in mice by enhancing Th17-skewed mucosal and systemic immunities.” European journal of immunology vol. 45,5 (2015): 1402-13. | |
| dc.relation.references | 77.Tsai PW, Yang CY, Chang HT, Lan CY. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS One. 2011;6(3):e17755. | |
| dc.relation.references | 78.Rodríguez, Esaú E et al. “Comparing the copper binding features of alpha and beta synucleins.” Journal of inorganic biochemistry vol. 229 (2022): 111715. | |
| dc.relation.references | 79.Gazendam, Roel P et al. “Human Neutrophils Use Different Mechanisms To Kill Aspergillus fumigatus Conidia and Hyphae: Evidence from Phagocyte Defects.” Journal of immunology (Baltimore, Md. : 1950) vol. 196,3 (2016): 1272-83. | |
| dc.relation.references | 80.Unger, Lucas et al. “Candida albicans induces neutrophil extracellular traps and leucotoxic hypercitrullination via candidalysin.” EMBO reports vol. 24,11 (2023): e57571. | |
| dc.relation.references | 81.Peña Agudelo, Jorge A et al. “Mitochondrial Peptide Humanin Facilitates Chemoresistance in Glioblastoma Cells.” Cancers vol. 15,16 4061. 11 Aug. 2023 | |
| dc.relation.references | 82.Consuegra-Asprilla JM, Rodríguez-Echeverri C, Posada DH, Gómez BL, González Á. Patients with recurrent vulvovaginal candidiasis exhibit a decrease in both the fungicidal activity of neutrophils and the proliferation of peripheral blood mononuclear cells. Mycoses. 2024;67(4):e13720. | |
| dc.relation.references | 83.Saffarzadeh M, Juenemann C, Queisser MA, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One. 2012;7(2):e32366. | |
| dc.relation.references | 84.Gozalbo, Daniel et al. “Role of IFN-gamma in immune responses to Candida albicans infections.” Frontiers in bioscience (Landmark edition) vol. 19,8 1279-90. 1 Jun. 2014 | |
| dc.relation.references | 85.Stevenhagen A, van Furth R. Interferon-gamma activates the oxidative killing of Candida albicans by human granulocytes. Clin Exp Immunol. 1993;91(1):170-175. | |
| dc.relation.references | 86.Satora M, Grunwald A, Zaremba B, Frankowska K, Żak K, Tarkowski R, Kułak K. Treatment of Vulvovaginal Candidiasis—An Overview of Guidelines and the Latest Treatment Methods. Journal of Clinical Medicine. 2023; 12(16):5376. | |
| dc.relation.references | 87.Willems, Hubertine M E et al. “Vulvovaginal Candidiasis: A Current Understanding and Burning Questions.” Journal of fungi (Basel, Switzerland) vol. 6,1 27. 25 Feb. 2020 | |
| dc.relation.references | 88.Nuijens T., Piva E., Kruijtzer J.A.W., Rijkers D.T.S., Liskamp R.M.J., Quaedflieg P.J.L.M. Enzymatic C-terminal amidation of amino acids and peptides. Tetrahedron Lett. 2012;53:3777–3779. | |
| dc.relation.references | 89.Coombe, D R, and W C Kett. “Heparan sulfate-protein interactions: therapeutic potential through structure-function insights.” Cellular and molecular life sciences : CMLS vol. 62,4 (2005): 410-24. | |
| dc.relation.references | 90.Sanderson, R D, and M Bernfield. “Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia.” Proceedings of the National Academy of Sciences of the United States of America vol. 85,24 (1988): 9562-6. | |
| dc.relation.references | 91.Boink MA, Roffel S, Nazmi K, Bolscher JGM, Veerman ECI, Gibbs S. Saliva-Derived Host Defense Peptides Histatin1 and LL-37 Increase Secretion of Antimicrobial Skin and Oral Mucosa Chemokine CCL20 in an IL-1α-Independent Manner. J Immunol Res. 2017;2017:3078194. | |
| dc.relation.references | 91.Boink MA, Roffel S, Nazmi K, Bolscher JGM, Veerman ECI, Gibbs S. Saliva-Derived Host Defense Peptides Histatin1 and LL-37 Increase Secretion of Antimicrobial Skin and Oral Mucosa Chemokine CCL20 in an IL-1α-Independent Manner. J Immunol Res. 2017;2017:3078194. | |
| dc.relation.references | 93.Radic, Marko, and Sylviane Muller. “LL-37, a Multi-Faceted Amphipathic Peptide Involved in NETosis.” Cells vol. 11,15 2463. 8 Aug. 2022 | |
| dc.relation.references | 94.Hu Z, Murakami T, Suzuki K, et al. Antimicrobial cathelicidin peptide LL-37 inhibits the pyroptosis of macrophages and improves the survival of polybacterial septic mice. Int Immunol. 2016;28(5):245-253. | |
| dc.relation.references | 95.Yano J, Fidel PL Jr. Impaired neutrophil extracellular trap-forming capacity contributes to susceptibility to chronic vaginitis in a mouse model of vulvovaginal candidiasis. Infect Immun. 2024;92(3):e0035023. | |
| dc.relation.references | 96.Radic M, Muller S. LL-37, a Multi-Faceted Amphipathic Peptide Involved in NETosis. Cells. 2022;11(15):2463. | |
| dc.relation.references | 97.Rosentul DC, Delsing CE, Jaeger M, et al. Gene polymorphisms in pattern recognition receptors and susceptibility to idiopathic recurrent vulvovaginal candidiasis. Front Microbiol. 2014;5:483. | |
| dc.relation.references | 98.Li J, Casanova JL, Puel A. Mucocutaneous IL-17 immunity in mice and humans: host defense vs. excessive inflammation. Mucosal Immunol 2018; 11:581–9. | |
| dc.relation.references | 99.Xan de Veerdonk FL, Gresnigt MS, Kullberg BJ. et al. Th17 responses and host defense against microorganisms: an overview. BMB Rep 2009;42:776–87. | |
| dc.relation.references | Peters BM, Coleman BM, Willems HME, et al. The Interleukin (IL) 17R/IL-22R Signaling Axis Is Dispensable for Vulvovaginal Candidiasis Regardless of Estrogen Status. J Infect Dis. 2020;221(9):1554-1563. | |
| dc.relation.references | Peters BM, Coleman BM, Willems HME, et al. The Interleukin (IL) 17R/IL-22R Signaling Axis Is Dispensable for Vulvovaginal Candidiasis Regardless of Estrogen Status. J Infect Dis. 2020;221(9):1554-1563. | |
| dc.rights | Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores. | |
| dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject.proposal | Candidiasis vulvovaginal | |
| dc.subject.proposal | Neutrófilos | |
| dc.subject.proposal | Catelicidina humana | |
| dc.subject.proposal | Actividad inmunomoduladora | |
| dc.subject.proposal | Péptidos antimicrobianos | |
| dc.subject.proposal | Candida albicans | |
| dc.title | Actividad inmunomoduladora y antifúngica del péptido LL37-1 en el tratamiento de la candidiasis vulvovaginal: Un estudio in vitro e in vivo | |
| dc.type | Trabajo de grado - Pregrado | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TP | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- Informe Final - Maicol Suarez.pdf
- Tamaño:
- 6.48 MB
- Formato:
- Adobe Portable Document Format
Cargando...
- Nombre:
- CARTA DERECHOS DE AUTOR IIP 2024.docx (41) (9).pdf
- Tamaño:
- 134.31 KB
- Formato:
- Adobe Portable Document Format
Cargando...
- Nombre:
- FORMATO IDENTIFICACIÓN TRABAJOS DE GRADO (1) (1) (1) (1).pdf
- Tamaño:
- 299.03 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 14.49 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

